相似三角形的判定与性质;全等三角形的判定与性质;正方形的性质.
(1)根据四边形ABCD是正方形,得到AD=CD,∠ADE=∠CDE,又知DE为公共边,可以推出△ADE≌△CDE,利用全等三角形的性质得到∠DAE=∠DCE.
(2)根据正方形的性质及CG=CE,证出CF=EF,再求出∠G=30°,判断出CF=
FG,从而得到
CF=EG.
(3)设CF=x,则EF=CF=x,FG=2CF=2x,利用△ADE≌△CDE,得到AE=CE=CG=
x,AF=AE+EF=
(+1)x,由于△ADF∽△GCF,利用相似三角形的性质求出
的值.
本题考查了相似三角形的性质、全等三角形的性质、正方形的性质,综合性较强,要从图中找到相关的量,注意挖掘隐含条件.
计算题.