试题

题目:
(2009·宾阳县二模)如图,AB为半圆O的直径,D、E是半圆上的两点,且BD平分∠ABE,过点D作BE延长线的垂线,垂足为青果学院C,直线CD交BA的延长线于点F.
(1)求证:直线CD是半圆O的切线;
(2)若FA=2,OA=3,求BC的长.
答案
解:(1)(5分)证明:连接OD
青果学院
∵OD=OB
∴∠ABD=∠BDO(1分)
又∵BD平分∠ABE
∴∠CBD=∠ABD
∴∠CBD=∠BDO(1分)
∴OD∥BC(1分)
∵CD⊥BC
∴DC⊥OD(1分)
∴直线CD是半圆O的切线(1分)

(2)(5分)解:∵OD∥BC
∴△FOD∽△FBC(1分)
OD
BC
=
FO
FB
(2分)
3
BC
=
5
8
(1分)
∴BC=
24
5
=4.8
(1分)
解:(1)(5分)证明:连接OD
青果学院
∵OD=OB
∴∠ABD=∠BDO(1分)
又∵BD平分∠ABE
∴∠CBD=∠ABD
∴∠CBD=∠BDO(1分)
∴OD∥BC(1分)
∵CD⊥BC
∴DC⊥OD(1分)
∴直线CD是半圆O的切线(1分)

(2)(5分)解:∵OD∥BC
∴△FOD∽△FBC(1分)
OD
BC
=
FO
FB
(2分)
3
BC
=
5
8
(1分)
∴BC=
24
5
=4.8
(1分)
考点梳理
切线的判定;平行线的性质;三角形的稳定性;相似三角形的判定与性质.
(1)连接OD,通过证明OD∥BC得出结论.
(2)证明△FOD∽△FBC,再根据相似三角形的性质求出BC的长.
本题综合考查了切线的判定,相似三角形的判定和性质,会利用比例求线段的长.
几何综合题;压轴题.
找相似题