答案
解:(1)∵AB=AC,BC=12,AF⊥BC于点F,
∴BF=FC=6.
∵⊙O经过点F,并分别与AB、AC边切于点D、E.
∴BD=BF=6,CE=CF=6.
∵AB=AC=10,
∴AD=AE=4,∴AD:AB=AE:AC,∴DE∥BC,
∴DE:BC=AD:AB,即DE:12=4:10,∴DE=4.8,
∴△ADE的周长=AD+DE+AE=4+4+4.8=12.8.
(2)∵AF⊥BC于点F,∴∠AFB=90°.
∵AB=10,BF=6,∴AF=
=8.
∵⊙O与AC边切于点D,∴∠ADO=90°.
∴∠ADO=∠AFB,且OD=OF.
∵∠OAD=∠BAF,∴△ADO∽△AFB,
∴AO:AB=OD:BF,
即(8-OD):10=OD:6,∴OD=3,
∴S
⊙O=π·OD
2=9π.
解:(1)∵AB=AC,BC=12,AF⊥BC于点F,
∴BF=FC=6.
∵⊙O经过点F,并分别与AB、AC边切于点D、E.
∴BD=BF=6,CE=CF=6.
∵AB=AC=10,
∴AD=AE=4,∴AD:AB=AE:AC,∴DE∥BC,
∴DE:BC=AD:AB,即DE:12=4:10,∴DE=4.8,
∴△ADE的周长=AD+DE+AE=4+4+4.8=12.8.
(2)∵AF⊥BC于点F,∴∠AFB=90°.
∵AB=10,BF=6,∴AF=
=8.
∵⊙O与AC边切于点D,∴∠ADO=90°.
∴∠ADO=∠AFB,且OD=OF.
∵∠OAD=∠BAF,∴△ADO∽△AFB,
∴AO:AB=OD:BF,
即(8-OD):10=OD:6,∴OD=3,
∴S
⊙O=π·OD
2=9π.