试题

题目:
青果学院如图,BMDF和ADEN都是正方形,已知△CDE的面积为6cm2,则△ABC的面积为
6
6
cm2
答案
6

解:∵BF∥DE,
a
b
=
CF
CD

∴CF=
a2
a+b
,CD=
ab
a+b

∴△ABC的面积为
1
2
×a×(AF+FC)=
1
2
×
ab2
a+b

△CDE的面积为
1
2
×b×DE=
1
2
×
ab2
a+b

∴△CDE的面积与△ABC的面积相等,
∴△CDE的面积为6.
故答案为:6.
考点梳理
相似三角形的判定与性质;三角形的面积;正方形的性质.
根据BF∥DE即可判定△EDC∽△BFC,即可求得CF、CD的值,即可计算△CDE的面积与△ABC的面积相等,即可解题.
本题考查了相似三角形的判定和相似三角形对应边比值相等的性质,三角形面积的计算,正方形各边长相等的性质,本题中求得△CDE的面积与△ABC的面积相等是解题的关键.
计算题.
找相似题