试题
题目:
已知四边形ABCD内接于⊙O,分别延长AB和DC相交于点P,
CB
=
CD
,AB=12,CD=6,PB=8,则⊙O的面积为
45π
45π
.
答案
45π
解:由切割线定理得:PB×PA=PC×PD,
∴8×(8+12)=PC×(PC+6),
∴PC=10,
连接AC,
∵四边形ABCD内接于圆O,
∴∠PCB=∠PAD,
∵∠P=∠P,
∴△PCB∽△PAD,
∴
PC
PA
=
BC
AD
,
∵弧BC=弧CD,
∴BC=CD=6,
∵PC=10,PA=8+12,
∴
10
8+12
=
6
AD
,
∴AD=12=AB,
∴弧AB=弧AD,
∵弧BC=弧CD,
∴弧ABC=弧ADC,
∴AC是圆的直径,
∴∠ABC=90°,
由勾股定理得:AC=
AB
2
+
BC
2
=6
5
,
∴圆O的半径是3
5
,面积是π·
(3
5
)
2
=45π,
故答案为:45π.
考点梳理
考点
分析
点评
专题
圆周角定理;勾股定理;相似三角形的判定与性质.
由切割线定理求出PC,证△PCB∽△PAD得到比例式求出AD,根据AD、AB、CD、BC的长度推出AC是直径,求出∠ABC=90°,根据勾股定理求出AC即可.
本题主要考查对圆周角定理,勾股定理,相似三角形的性质和判定等知识点的连接和掌握,能推出AC是直径是解此题的关键.
计算题.
找相似题
(2013·重庆)如图,在平行四边形ABCD中,点E在AD上,连接CE并延长与BA的延长线交于点F,若AE=2ED,CD=3cm,则AF的长为( )
(2013·雅安)如图,DE是△ABC的中位线,延长DE至F使EF=DE,连接CF,则S
△CEF
:S
四边形BCED
的值为( )
(2013·新疆)如图,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2cm,D为BC的中点,若动点E以1cm/s的速度从A点出发,沿着A→B→A的方向运动,设E点的运动时间为t秒(0≤t<6),连接DE,当△BDE是直角三角形时,t的值为( )
(2013·无锡)如图,梯形ABCD中,AD∥BC,对角线AC、BD相交于O,AD=1,BC=4,则△AOD与△BOC的面积比等于( )
(2013·台湾)如图,将一张直角三角形纸片沿虚线剪成甲、乙、丙三块,其中甲、丙为梯形,乙为三角形.根据图中标示的边长数据,比较甲、乙、丙的面积大小,下列判断何者正确?( )