试题

题目:
青果学院如图,在⊙O中,AB=AC,则△ABD∽
△AEB
△AEB
;若AC=12,AE=8,则AD=
18
18

答案
△AEB

18

解:∵AB=AC,
∴∠ABC=∠C,
∵∠D=∠C(同弧所对的圆周角相等),
∴∠ABC=∠D,
∵∠BAD=∠EAB,
∴△ABD∽△AEB,
AE
AB
=
AB
AD

8
12
=
12
AD

解得AD=18.
故答案为:18.
考点梳理
相似三角形的判定与性质;相交弦定理.
由同弧所对的圆周角相等可知,∠D=∠C,由AB=AC,∠ABC=∠C可推出△ABD∽△AEB,利用相似三角形对应边成比例即可得出答案.
此题主要考查学生对相似三角形的判定与性质和相交弦定理的理解和应用,解题时注意找准相似三角形.如果利用△ABD∽△ABC,再求AD的长就比较麻烦了.
计算题.
找相似题