试题
题目:
(2006·上海模拟)已知:如图,在以点O为圆心的两个同心圆中,大圆的半径OA与小圆相交于点B,AC与小圆相切于点C,OC的延长线与大圆相交于点D,AC与BD相交于点E.
求证:(1)BD是小圆的切线;
(2)CE:AE=OC:OD.
答案
证明:(1)∵AC与小圆O相切于点C,
∴∠ACO=90°;
∵OD=OA,OB=OC,∠O=∠O,
∴△DOB≌△AOC,
∴∠DBO=∠ACO=90°,
∵OB是小圆的半径,
∴BD是小圆的切线;
(2)∵△AOC≌△DOB,
∴∠A=∠D;
又∵∠EBA=∠DBO=90°,
∴△ABE∽△DBO,∴BE:AE=OB:OD;
∵EB、EC与小圆分别相切于B、C,
∴CE=BE;
又∵OC=OB,
∴CE:AE=OC:OD.
证明:(1)∵AC与小圆O相切于点C,
∴∠ACO=90°;
∵OD=OA,OB=OC,∠O=∠O,
∴△DOB≌△AOC,
∴∠DBO=∠ACO=90°,
∵OB是小圆的半径,
∴BD是小圆的切线;
(2)∵△AOC≌△DOB,
∴∠A=∠D;
又∵∠EBA=∠DBO=90°,
∴△ABE∽△DBO,∴BE:AE=OB:OD;
∵EB、EC与小圆分别相切于B、C,
∴CE=BE;
又∵OC=OB,
∴CE:AE=OC:OD.
考点梳理
考点
分析
点评
专题
切线的判定与性质;全等三角形的判定与性质;相似三角形的判定与性质.
(1)欲证BD是小圆的切线,只需证明∠OBD=90°(或BD⊥OB)即可;
(2)由(1)中全等三角形△AOC≌△DOB的性质、切线BD的性质推知△ABE∽△DBO;然后根据相似三角形的对应边成比例求得BE:AE=OB:OD;由小圆的两条切线CE=BE,小圆的半径OC=OB可以证得结论.
本题考查了切线的判定与性质、全等三角形的判定与性质、相似三角形的判定与性质.注意,切线性质是:圆的切线垂直于经过切点的“半径”.
证明题.
找相似题
(2013·重庆)如图,在平行四边形ABCD中,点E在AD上,连接CE并延长与BA的延长线交于点F,若AE=2ED,CD=3cm,则AF的长为( )
(2013·雅安)如图,DE是△ABC的中位线,延长DE至F使EF=DE,连接CF,则S
△CEF
:S
四边形BCED
的值为( )
(2013·新疆)如图,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2cm,D为BC的中点,若动点E以1cm/s的速度从A点出发,沿着A→B→A的方向运动,设E点的运动时间为t秒(0≤t<6),连接DE,当△BDE是直角三角形时,t的值为( )
(2013·无锡)如图,梯形ABCD中,AD∥BC,对角线AC、BD相交于O,AD=1,BC=4,则△AOD与△BOC的面积比等于( )
(2013·台湾)如图,将一张直角三角形纸片沿虚线剪成甲、乙、丙三块,其中甲、丙为梯形,乙为三角形.根据图中标示的边长数据,比较甲、乙、丙的面积大小,下列判断何者正确?( )