试题
题目:
(2006·闸北区一模)如图,在等腰△ABC中,AB=AC,D是AB上的动点,作等腰△EDC∽△ABC.
求证:(1)△ACE∽△BCD;
(2)AE∥BC.
答案
证明:(1)∵△EDC∽△ABC (1分)
∴
BC
DC
=
AC
EC
,∠ECD=∠ACB(2分)
∴∠ACE=∠BCD (1分)
∴△ACE∽△BCD(2分);
(2)根据(1)得∠EAC=∠B(1分)
∵AB=AC (1分)
∴∠B=∠ACB (1分)
∴∠EAC=∠ACB (1分)
∴AE∥BC (2分)
证明:(1)∵△EDC∽△ABC (1分)
∴
BC
DC
=
AC
EC
,∠ECD=∠ACB(2分)
∴∠ACE=∠BCD (1分)
∴△ACE∽△BCD(2分);
(2)根据(1)得∠EAC=∠B(1分)
∵AB=AC (1分)
∴∠B=∠ACB (1分)
∴∠EAC=∠ACB (1分)
∴AE∥BC (2分)
考点梳理
考点
分析
点评
专题
相似三角形的判定与性质;等腰三角形的性质.
(1)由△EDC∽△ABC 可以得到
BC
DC
=
AC
EC
,∠ECD=∠ACB,接着得到∠ACE=∠BCD,利用相似三角形的判定得到△ACE∽△BCD;
(2)根据相似三角形的性质得到∠EAC=∠B,由AB=AC可以得到∠B=∠ACB,由此利用平行线的判定即可证明AE∥BC.
此题主要考查了相似三角形的性质与判定,解题的关键是熟练运用相似三角形的性质与平顶尖级问题.
证明题.
找相似题
(2013·重庆)如图,在平行四边形ABCD中,点E在AD上,连接CE并延长与BA的延长线交于点F,若AE=2ED,CD=3cm,则AF的长为( )
(2013·雅安)如图,DE是△ABC的中位线,延长DE至F使EF=DE,连接CF,则S
△CEF
:S
四边形BCED
的值为( )
(2013·新疆)如图,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2cm,D为BC的中点,若动点E以1cm/s的速度从A点出发,沿着A→B→A的方向运动,设E点的运动时间为t秒(0≤t<6),连接DE,当△BDE是直角三角形时,t的值为( )
(2013·无锡)如图,梯形ABCD中,AD∥BC,对角线AC、BD相交于O,AD=1,BC=4,则△AOD与△BOC的面积比等于( )
(2013·台湾)如图,将一张直角三角形纸片沿虚线剪成甲、乙、丙三块,其中甲、丙为梯形,乙为三角形.根据图中标示的边长数据,比较甲、乙、丙的面积大小,下列判断何者正确?( )