试题
题目:
如图,在等腰梯形ABCD中,AB∥CD,对角线AC、BD相交于O,∠ABD=30°,AC⊥BC,AB=8cm,则△COD的面积为
4
3
3
4
3
3
.
答案
4
3
3
解:在等腰梯形ABCD中,AB∥CD,
∴∠DAB=∠CBA,AD=BC,AC=BD,
在△ABD和△BAC中,
∵
AD=BC
∠DAB=∠CBA
AB=BA
,
∴△ABD≌△BAC(SAS),
∴∠CAB=∠ABD=30°,
∵AC⊥BC,
∴∠DAB=∠CBA=60°,
∴∠OBC=30°,∠OAB=∠OBA=30°,
∴OA=OB,
在Rt△OBC中,
OC
OB
=sin30°=
1
2
,
∴OC:OA=1:2,
∵CD∥AB,
∴△OCD∽△OAB,
∴OC:OA=OD:OB=1:2,
在Rt△ABC中,BC=
1
2
AB=4cm,AC=
A
B
2
-B
C
2
=4
3
,
∴S
△ABC
=
1
2
AC·BC=8
3
,
∴S
△BOC
=
1
3
S
△ABC
=
8
3
3
,
∴S
△OCD
=
1
2
S
△OBC
=
4
3
3
.
故答案为:
4
3
3
.
考点梳理
考点
分析
点评
相似三角形的判定与性质;等腰梯形的性质.
由在等腰梯形ABCD中,AB∥CD,易证得△ABD≌△BAC,即可求得∠OBC=30°,OA=OB,又由△OCD∽△OAB,根据相似三角形的对应边成比例,即可得OC:OA=OD:OB=1:2,然后由等高三角形的面积比等于对应底的比,即可求得答案.
此题考查了相似三角形的判定与性质、全等三角形的判定与性质、勾股定理以及等腰梯形的性质.此题难度较大,注意掌握数形结合思想的应用.
找相似题
(2013·重庆)如图,在平行四边形ABCD中,点E在AD上,连接CE并延长与BA的延长线交于点F,若AE=2ED,CD=3cm,则AF的长为( )
(2013·雅安)如图,DE是△ABC的中位线,延长DE至F使EF=DE,连接CF,则S
△CEF
:S
四边形BCED
的值为( )
(2013·新疆)如图,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2cm,D为BC的中点,若动点E以1cm/s的速度从A点出发,沿着A→B→A的方向运动,设E点的运动时间为t秒(0≤t<6),连接DE,当△BDE是直角三角形时,t的值为( )
(2013·无锡)如图,梯形ABCD中,AD∥BC,对角线AC、BD相交于O,AD=1,BC=4,则△AOD与△BOC的面积比等于( )
(2013·台湾)如图,将一张直角三角形纸片沿虚线剪成甲、乙、丙三块,其中甲、丙为梯形,乙为三角形.根据图中标示的边长数据,比较甲、乙、丙的面积大小,下列判断何者正确?( )