试题
题目:
已知:如图,DE∥BC,且AD:DB=1:2,S
四边形DBCE
=60,则S
△ABC
=
67.5
67.5
.
答案
67.5
解:∵DE∥BC
∴△ADE∽△ABC
∵AD:DB=1:2,即AD:AB=1:3
∴S
△ADE
:S
△ABC
=1:9
设△ADE的面积是a,则△ABC的面积是9a,四边形DBCE的面积是8a,依题意有:8a=60,解得:a=7.5
∴S
△ABC
=9×7.5=67.5.
考点梳理
考点
分析
点评
相似三角形的判定与性质.
由于DE∥BC,因此△ADE∽△ABC,已知了AD、DB的比例关系,可得出AD、AB的比例关系,即两相似三角形的相似比;根据相似三角形的面积比等于相似比的平方,可得出两三角形的面积比.而四边形DBCE的面积实际是两个相似三角形的面积差,由此可求出△ABC的面积.
本题考查对相似三角形性质的理解,相似三角形面积的比等于相似比的平方.
找相似题
(2013·重庆)如图,在平行四边形ABCD中,点E在AD上,连接CE并延长与BA的延长线交于点F,若AE=2ED,CD=3cm,则AF的长为( )
(2013·雅安)如图,DE是△ABC的中位线,延长DE至F使EF=DE,连接CF,则S
△CEF
:S
四边形BCED
的值为( )
(2013·新疆)如图,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2cm,D为BC的中点,若动点E以1cm/s的速度从A点出发,沿着A→B→A的方向运动,设E点的运动时间为t秒(0≤t<6),连接DE,当△BDE是直角三角形时,t的值为( )
(2013·无锡)如图,梯形ABCD中,AD∥BC,对角线AC、BD相交于O,AD=1,BC=4,则△AOD与△BOC的面积比等于( )
(2013·台湾)如图,将一张直角三角形纸片沿虚线剪成甲、乙、丙三块,其中甲、丙为梯形,乙为三角形.根据图中标示的边长数据,比较甲、乙、丙的面积大小,下列判断何者正确?( )