试题
题目:
梯形ABCD中,AB∥DC,AD=BC,以AD为直径的⊙O交AB于E,⊙O的切线EF交BC于F,求证:
(1)EF⊥BC;
(2)BF·BC=BE·AE.
答案
证明:(1)连接OE,
∵∠DEF+∠DEO=90°,∠ADE+∠OEA=90°,
∴∠DEF=∠OEA.
∵OA=OE,AD=BC,
∴∠OEA=∠A=∠B.
∴∠A=∠B=∠DEF.
∵∠DEF+∠BEF=90°,
∴∠BEF+∠B=90°.
∴EF⊥BC;
(2)∵∠A=∠B,∠AED=∠BFE=90°,
∴△ADE∽△BEF.
∴
AD
BE
=
AE
BF
.
∵AD=BC,
∴
BC
BE
=
AE
BF
.
∴BF·BC=BE·AE.
证明:(1)连接OE,
∵∠DEF+∠DEO=90°,∠ADE+∠OEA=90°,
∴∠DEF=∠OEA.
∵OA=OE,AD=BC,
∴∠OEA=∠A=∠B.
∴∠A=∠B=∠DEF.
∵∠DEF+∠BEF=90°,
∴∠BEF+∠B=90°.
∴EF⊥BC;
(2)∵∠A=∠B,∠AED=∠BFE=90°,
∴△ADE∽△BEF.
∴
AD
BE
=
AE
BF
.
∵AD=BC,
∴
BC
BE
=
AE
BF
.
∴BF·BC=BE·AE.
考点梳理
考点
分析
点评
专题
切线的性质;相似三角形的判定与性质.
(1)根据已知利用切线的性质可得到∠BEF+∠B=90°,即EF⊥BC;
(2)利用两组角对应相等的两个三角形相似得到△ADE∽△BEF,再根据相似三角形的对应边成比例和AD=BC,即可得到BF·BC=BE·AE.
此题考查了相似三角形的性质与判定,切线的性质等知识及其运用能力.
证明题.
找相似题
(2013·重庆)如图,在平行四边形ABCD中,点E在AD上,连接CE并延长与BA的延长线交于点F,若AE=2ED,CD=3cm,则AF的长为( )
(2013·雅安)如图,DE是△ABC的中位线,延长DE至F使EF=DE,连接CF,则S
△CEF
:S
四边形BCED
的值为( )
(2013·新疆)如图,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2cm,D为BC的中点,若动点E以1cm/s的速度从A点出发,沿着A→B→A的方向运动,设E点的运动时间为t秒(0≤t<6),连接DE,当△BDE是直角三角形时,t的值为( )
(2013·无锡)如图,梯形ABCD中,AD∥BC,对角线AC、BD相交于O,AD=1,BC=4,则△AOD与△BOC的面积比等于( )
(2013·台湾)如图,将一张直角三角形纸片沿虚线剪成甲、乙、丙三块,其中甲、丙为梯形,乙为三角形.根据图中标示的边长数据,比较甲、乙、丙的面积大小,下列判断何者正确?( )