试题
题目:
如图,边长12的正方形ABCD中,有一个小正方形EFGH,其中E、F、G分别在AB、BC、
FD上.若BF=3,则小正方形的边长为
15
4
15
4
.
答案
15
4
解:在△BEF与△CFD中
∵∠1+∠2=∠2+∠3=90°,
∴∠1=∠3,
∵∠B=∠C=90°,
∴△BEF∽△CFD,
∵BF=3,BC=12,
∴CF=BC-BF=12-3=9,
又∵DF=
C
D
2
+C
F
2
=
1
2
2
+
9
2
=15,
∴
BF
CD
=
EF
DF
,即
3
12
=
EF
15
,
∴EF=
15
4
,
故答案为:
15
4
.
考点梳理
考点
分析
点评
相似三角形的判定与性质;正方形的性质.
先根据相似三角形的判定定理得出△BEF∽△CFD,再根据勾股定理求出DF的长,再由相似三角形的对应边成比例即可得出结论.
本题考查的是相似三角形的判定与性质及勾股定理,根据题意得出△BEF∽△CFD是解答此题的关键.
找相似题
(2013·重庆)如图,在平行四边形ABCD中,点E在AD上,连接CE并延长与BA的延长线交于点F,若AE=2ED,CD=3cm,则AF的长为( )
(2013·雅安)如图,DE是△ABC的中位线,延长DE至F使EF=DE,连接CF,则S
△CEF
:S
四边形BCED
的值为( )
(2013·新疆)如图,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2cm,D为BC的中点,若动点E以1cm/s的速度从A点出发,沿着A→B→A的方向运动,设E点的运动时间为t秒(0≤t<6),连接DE,当△BDE是直角三角形时,t的值为( )
(2013·无锡)如图,梯形ABCD中,AD∥BC,对角线AC、BD相交于O,AD=1,BC=4,则△AOD与△BOC的面积比等于( )
(2013·台湾)如图,将一张直角三角形纸片沿虚线剪成甲、乙、丙三块,其中甲、丙为梯形,乙为三角形.根据图中标示的边长数据,比较甲、乙、丙的面积大小,下列判断何者正确?( )