试题
题目:
如图,矩形EFGH内接于△ABC,AD⊥BC于点D,交EH于点M,BC=8cm,AD=6cm,EH=2EF,则EH=
24
5
24
5
cm.
答案
24
5
解:设EF=x,则HE=2x
∵矩形EFGH内接于△ABC且AD⊥BC
∴EH∥BC,EF∥AD
∴△AEH∽△ABC,△BFE∽△BDA,
∴
HE
BC
=
AE
AB
,
EF
AD
=
BE
AB
,
∴
2x
8
=
AE
AB
,
x
6
=
BE
AB
,
∴
2x
8
+
x
6
=
AE
AB
+
BE
AB
=1,
解得:x=
12
5
,
∴EH=2x=
24
5
,
故答案为:
24
5
.
考点梳理
考点
分析
点评
相似三角形的判定与性质;矩形的性质.
设EF=x,利用三角形相似的性质:对应边成比例,可求出x,进而求出EH的长.
本题考查了相似三角形的性质和判定,对于三角形相似类型的题目求边长,周长等,常常要用相似三角形的对应边成比例的性质来解题,这是常识,应记住并应用.
找相似题
(2013·重庆)如图,在平行四边形ABCD中,点E在AD上,连接CE并延长与BA的延长线交于点F,若AE=2ED,CD=3cm,则AF的长为( )
(2013·雅安)如图,DE是△ABC的中位线,延长DE至F使EF=DE,连接CF,则S
△CEF
:S
四边形BCED
的值为( )
(2013·新疆)如图,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2cm,D为BC的中点,若动点E以1cm/s的速度从A点出发,沿着A→B→A的方向运动,设E点的运动时间为t秒(0≤t<6),连接DE,当△BDE是直角三角形时,t的值为( )
(2013·无锡)如图,梯形ABCD中,AD∥BC,对角线AC、BD相交于O,AD=1,BC=4,则△AOD与△BOC的面积比等于( )
(2013·台湾)如图,将一张直角三角形纸片沿虚线剪成甲、乙、丙三块,其中甲、丙为梯形,乙为三角形.根据图中标示的边长数据,比较甲、乙、丙的面积大小,下列判断何者正确?( )