试题

题目:
青果学院已知:如图,△ABC中,AD是∠BAC的平分线,DE∥AB,交AC于E,AB=15,AC=10.求DE的长.
答案
解:∵AD是∠BAC的平分线
∴∠BAD=∠DAE
又∵DE∥AB
∴∠BAD=∠ADE
∴∠ADE=∠EAD
∴DE=AE
又△CDE∽△CBA
DE
BA
=
EC
AC

设DE=x,则AE=x,EC=10-x
x
15
=
10-x
10

∴x=6
即:DE=6.
解:∵AD是∠BAC的平分线
∴∠BAD=∠DAE
又∵DE∥AB
∴∠BAD=∠ADE
∴∠ADE=∠EAD
∴DE=AE
又△CDE∽△CBA
DE
BA
=
EC
AC

设DE=x,则AE=x,EC=10-x
x
15
=
10-x
10

∴x=6
即:DE=6.
考点梳理
相似三角形的判定与性质;角平分线的定义;平行线的性质.
由AD是∠BAC的平分线可得∠BAD=∠DAE,又DE∥AB可得出∠BAD=∠ADE,△CDE∽△CBA,所以,∠ADE=∠EAD,
DE
BA
=
EC
AC
,即:DE=AE,所以设DE=x,则AE=x,EC=10-x,分别将DE,AE,EC,AB代入关系式求解即可得出答案.
本题考查了平行线的性质、相似三角形的判定和性质以及角平分线的性质,是一道综合性的题目,要求对每个知识点都比较熟悉,这就要求在平时的训练中多注意基本的知识点.
常规题型.
找相似题