试题

题目:
青果学院已知:如图,
AB
AD
=
BC
DE
=
AC
AE

(1)求证:∠BAD=∠CAE;
(2)探索:∠ABD与∠ACE是否相等?请说明理由.
答案
解:(1)∵
AB
AD
=
BC
DE
=
AC
AE

∴△ABC∽△ADE,
∴∠BAC=∠DAE,
∴∠BAC-∠DAC=∠DAE-∠DAC,
即∠BAD=∠CAE.

(2)∠ABD=∠ACE,
AB
AD
=
AC
AE

AB
AC
=
AD
AE

又∠BAD=∠CAE,
∴△ABD∽△ACE,
∴∠ABD=∠ACE.
解:(1)∵
AB
AD
=
BC
DE
=
AC
AE

∴△ABC∽△ADE,
∴∠BAC=∠DAE,
∴∠BAC-∠DAC=∠DAE-∠DAC,
即∠BAD=∠CAE.

(2)∠ABD=∠ACE,
AB
AD
=
AC
AE

AB
AC
=
AD
AE

又∠BAD=∠CAE,
∴△ABD∽△ACE,
∴∠ABD=∠ACE.
考点梳理
相似三角形的判定与性质.
(1)根据题意可证明△ABC∽△ADE,再利用等式的基本性质即可得出结论;
(2)由
AB
AD
=
AC
AE
,和∠BAD=∠CAE,可证明△ABD∽△ACE,则∠ABD=∠ACE.
本题考查了相似三角形的判定和性质,是基础知识要熟练掌握.
证明题.
找相似题