试题

题目:
青果学院如图,在⊙O内接△ABC中,AB+AC=12,AD⊥BC于D,且AD=3,当⊙O的面积最大时,⊙O的半径是
6
6

答案
6

青果学院解:作直径AE,连接CE,如图所示,则∠ACE=90°,
∵AD⊥BC,
∴∠ACE=∠ADB=90度.
又∵∠B=∠E,
∴△ABD∽△AEC
设⊙O的半径为y,AB的长为x.
AB
AD
=
AE
AC
,即
x
3
=
2y
12-x

整理得y=-
1
6
(x-6)2+6.
∴y=-
1
6
(x-6)2+6,
则当x=6时,y取得最大值,最大值为6.
故答案为:6.
考点梳理
相似三角形的判定与性质;二次函数的最值;圆周角定理.
由题意知,需作出圆的直径AE,利用直径所对的圆周角是直角,得出△ABD∽△AEC.根据相似三角形的性质得到边之间的对应比相等,建立函数关系式;根据二次函数的最值的求法,结合函数关系式进行求解.
此题主要考查三角形相似及二次函数最大值的求法.题目难度较大.
找相似题