试题
题目:
如图,在⊙O内接△ABC中,AB+AC=12,AD⊥BC于D,且AD=3,当⊙O的面积最大时,⊙O的半径是
6
6
.
答案
6
解:作直径AE,连接CE,如图所示,则∠ACE=90°,
∵AD⊥BC,
∴∠ACE=∠ADB=90度.
又∵∠B=∠E,
∴△ABD∽△AEC
设⊙O的半径为y,AB的长为x.
则
AB
AD
=
AE
AC
,即
x
3
=
2y
12-x
.
整理得y=-
1
6
(x-6)
2
+6.
∴y=-
1
6
(x-6)
2
+6,
则当x=6时,y取得最大值,最大值为6.
故答案为:6.
考点梳理
考点
分析
点评
相似三角形的判定与性质;二次函数的最值;圆周角定理.
由题意知,需作出圆的直径AE,利用直径所对的圆周角是直角,得出△ABD∽△AEC.根据相似三角形的性质得到边之间的对应比相等,建立函数关系式;根据二次函数的最值的求法,结合函数关系式进行求解.
此题主要考查三角形相似及二次函数最大值的求法.题目难度较大.
找相似题
(2013·重庆)如图,在平行四边形ABCD中,点E在AD上,连接CE并延长与BA的延长线交于点F,若AE=2ED,CD=3cm,则AF的长为( )
(2013·雅安)如图,DE是△ABC的中位线,延长DE至F使EF=DE,连接CF,则S
△CEF
:S
四边形BCED
的值为( )
(2013·新疆)如图,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2cm,D为BC的中点,若动点E以1cm/s的速度从A点出发,沿着A→B→A的方向运动,设E点的运动时间为t秒(0≤t<6),连接DE,当△BDE是直角三角形时,t的值为( )
(2013·无锡)如图,梯形ABCD中,AD∥BC,对角线AC、BD相交于O,AD=1,BC=4,则△AOD与△BOC的面积比等于( )
(2013·台湾)如图,将一张直角三角形纸片沿虚线剪成甲、乙、丙三块,其中甲、丙为梯形,乙为三角形.根据图中标示的边长数据,比较甲、乙、丙的面积大小,下列判断何者正确?( )