试题

题目:
青果学院如图,在△ABC和△ADE中,∠BAD=∠CAE,∠ABC=∠ADE.
(1)求证:△ABC∽△ADE;
(2)判断△ABD与△ACE是否相似?并证明.
答案
证明:(1)∵∠BAD=∠CAE,
∴∠BAC=∠DAE,
∵∠ABC=∠ADE,
∴△ABC∽△ADE.

(2)△ABD∽△ACE.
证明:由(1)知△ABC∽△ADE,
AB
AD
=
AC
AE

∴AB×AE=AC×AD,
AB
AC
=
AD
AE

∵∠BAD=∠CAE,
∴△ABD∽△ACE.
证明:(1)∵∠BAD=∠CAE,
∴∠BAC=∠DAE,
∵∠ABC=∠ADE,
∴△ABC∽△ADE.

(2)△ABD∽△ACE.
证明:由(1)知△ABC∽△ADE,
AB
AD
=
AC
AE

∴AB×AE=AC×AD,
AB
AC
=
AD
AE

∵∠BAD=∠CAE,
∴△ABD∽△ACE.
考点梳理
相似三角形的判定与性质.
(1)由∠BAD=∠CAE,可得∠BAC=∠DAE,又有∠ABC=∠ADE,即可得出相似;
(2)有(1)中可得对应线段成比例,又有以对应角相等,即可判定其相似.
本题主要考查了相似三角形的判定及性质问题,应熟练掌握.
证明题.
找相似题