试题

题目:
青果学院如图,在△ABC和△ADE中,点B在ED的延长线上,
AB
AC
=
AD
AE
=
BD
CE

(1)求证:△ABC∽△ADE;
(2)若∠BAD=15°,求∠CBE的度数.
答案
(1)证明:∵
AB
AC
=
AD
AE
=
BD
CE

∴△ABD∽△ACE,
∴∠BAD=∠CAE,
∴∠BAD+∠DAC=∠CAE+∠DAC,
∴∠BAC=∠DAE,
AB
AC
=
AD
AE

∴△ABC∽△ADE;

(2)解:∵△ABC∽△ADE,
∴∠ABC=∠ADE,
∵∠CBE=∠ABC-∠ABD,
∴∠CBE=∠ADE-∠ABD=∠BAD=15°.
(1)证明:∵
AB
AC
=
AD
AE
=
BD
CE

∴△ABD∽△ACE,
∴∠BAD=∠CAE,
∴∠BAD+∠DAC=∠CAE+∠DAC,
∴∠BAC=∠DAE,
AB
AC
=
AD
AE

∴△ABC∽△ADE;

(2)解:∵△ABC∽△ADE,
∴∠ABC=∠ADE,
∵∠CBE=∠ABC-∠ABD,
∴∠CBE=∠ADE-∠ABD=∠BAD=15°.
考点梳理
相似三角形的判定与性质.
(1)由
AB
AC
=
AD
AE
=
BD
CE
,可得△ABD∽△ACE,则可证得∠BAC=∠DAE,则可得:△ABC∽△ADE;
(2)由△ABC∽△ADE,可得∠ABC=∠ADE,继而可得∠CBE=∠ADE-∠ABD=∠BAD=15°.
此题考查了相似三角形的判定与性质.此题难度适中,注意掌握数形结合思想的应用.
找相似题