试题

题目:
青果学院如图,在梯形ABCD中,AD∥BC,AB=CD,点E在BC的延长线上,且∠BDE=∠ADC.求证:AB·BD=DE·AD.
答案
证明:∵梯形ABCD中,AB=CD,
∴∠A=∠ADC(1分)
∵∠BDE=∠ADC,
∴∠A=∠BDE(1分)
∵AD∥BC,
∴∠ADB=∠DBE(1分)
∴△ABD∽△DEB(1分)
AB
DE
=
AD
DB
(2分)
∴AB·DB=AD·DE(1分)
证明:∵梯形ABCD中,AB=CD,
∴∠A=∠ADC(1分)
∵∠BDE=∠ADC,
∴∠A=∠BDE(1分)
∵AD∥BC,
∴∠ADB=∠DBE(1分)
∴△ABD∽△DEB(1分)
AB
DE
=
AD
DB
(2分)
∴AB·DB=AD·DE(1分)
考点梳理
相似三角形的判定与性质;梯形.
根据已知条件知梯形ABCD是等腰梯形,等腰梯形的两个底角∠A=∠ADC,又由已知条件∠BDE=∠ADC可推知∠A=∠BDE;根据两直线AD∥BC,知内错角∠ADB=∠DBE,∴由相似三角形的判定定理AA判知△ABD∽△DEB;然后由相似三角形的对应边成比例得到
AB
DE
=
AD
DB
,即AB·BD=DE·AD.
本题主要考查了等腰梯形的判定与性质、相似三角形的判定与性质.在证明AB·DB=AD·DE时,本题是通过证明△ABD∽△DEB,从而得到相似三角形的对应边的比
AB
DE
=
AD
DB
,即AB·DB=AD·DE的比例式的形式.
证明题.
找相似题