翻折变换(折叠问题);等腰三角形的性质;直角三角形的性质;勾股定理;菱形的判定与性质;相似三角形的判定与性质.
(1)先过A点作AM⊥BC,得出BM=
BC=3,再根据DE∥BC,得出AN⊥DE,即y=AN,再在Rt△ABM中,求出AM的值,再根据DE∥BC,求出△ADE∽△ABC,即可求出y与x的函数关系式;
(2)根据△A'DE由△ADE折叠得到,得出AD=A'D,AE=A'E,再由(1)可得△ADE是等腰三角形,得出AD=A'D,AE=A'E,即可证出四边形ADA'E是菱形,得出∠BDA'=∠BAC,再根据∠BAC≠∠ABC,∠BAC≠∠C,得出∠BDA'≠∠ABC,∠BDA'≠∠C,从而证出△BDA'∽△BAC,即可求出x的值;
(3)先分三种情况进行讨论;第一种情况当∠BDA′=90°,得出∠BDA'≠90°;第二种情况当∠BA'D=90°,根据∠BAM<90°,∠BA'D<∠BAM,可得∠BA'D≠90°;第三种情况当∠A'BD=90°,根据∠A'BD=90°,∠AMB=90°,得出△BA'M∽△ABM,即可求出BA′的值,再在Rt△D BA'中,根据DB
2+A'B
2=A'D
2,求出x的值,即可证出△A′DB是直角三角形;
本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.