试题
题目:
如图,已知AB是⊙O的直径,点C是⊙O上一点,连接BC,AC,过点C作直线CD⊥AB于点D,点E是AB上一点,直线CE交⊙O于点F,连接BF,与直线CD交于点G.BC=6,BG=2,则FG=
16
16
.
答案
16
解:∵AB是⊙O的直径,
∴∠ACB=90°,
∵CD⊥AB于点D,
∴∠BCG=∠A,
又∠A=∠F,
∴∠BCG=∠F,
又∠CBG=∠FBC,
∴△CBG∽△FBC,
∴
BC
BF
=
BG
BC
,
∵BC=6,BG=2,
即
6
BF
=
2
6
,
∴BF=18,
所以,FG=BF-BG=18-2=16.
考点梳理
考点
分析
点评
相似三角形的判定与性质;余角和补角;圆周角定理.
结合图形,可以先证明△CBG和△FBC相似,两个三角形中已经有一个公共角,只需进一步证明∠BCG=∠F,根据等角的余角相等和圆周角定理,借助中间角∠A即可证明.
熟练应用等角的余角相等和圆周角定理,借助中间角∠A,证明∠BCG=∠F,掌握相似形的判定和性质.
找相似题
(2013·重庆)如图,在平行四边形ABCD中,点E在AD上,连接CE并延长与BA的延长线交于点F,若AE=2ED,CD=3cm,则AF的长为( )
(2013·雅安)如图,DE是△ABC的中位线,延长DE至F使EF=DE,连接CF,则S
△CEF
:S
四边形BCED
的值为( )
(2013·新疆)如图,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2cm,D为BC的中点,若动点E以1cm/s的速度从A点出发,沿着A→B→A的方向运动,设E点的运动时间为t秒(0≤t<6),连接DE,当△BDE是直角三角形时,t的值为( )
(2013·无锡)如图,梯形ABCD中,AD∥BC,对角线AC、BD相交于O,AD=1,BC=4,则△AOD与△BOC的面积比等于( )
(2013·台湾)如图,将一张直角三角形纸片沿虚线剪成甲、乙、丙三块,其中甲、丙为梯形,乙为三角形.根据图中标示的边长数据,比较甲、乙、丙的面积大小,下列判断何者正确?( )