试题

题目:
青果学院如图,O是圆心,AB是半圆的直径,CD⊥AB,DE⊥OC,如果BD、CD的长都是有理数,那么图中长为有理数的线段还有
9
9
条.
答案
9

青果学院解:如右图,连接AC,BC,
∵AB是圆的直径,
∴∠ACB=90°,
∵CD⊥AB,
∴∠A=∠CDA=∠CDB=90°,∠A+∠ACD=90°,∠ACD+∠BCD=90°,
∴∠A=∠BCD,
∴△ADC∽△CDB,
CD
AD
=
BD
CD

CD2=AD·BD,
∵BD、CD的长都是有理数,
∴AD是有理数,
∵AB=AD+BD,
∴AB是有理数,
∴OA、OB、OC、OD都是有理数,
∵CD⊥OD,DE⊥OC,
∴∠CDO=∠CED=90°,
∵∠DCE=∠DCO,
∴△CDE∽△COD,
CD
CE
=
CO
CD

CD2=CE·OC,
∵CD、OC是有理数,
∴CE是有理数,
∴OE是有理数,
根据三角形的面积公式得:
1
2
CD×OD=
1
2
OC×DE,
∴DE是有理数.
综上可知:AD、AB、OA、OB、OC、OD、DE、OE、CE的长为有理数,
故答案为:9.
考点梳理
相似三角形的判定与性质;三角形的面积;圆周角定理.
连接AC,BC,证△ADC∽△CDB,得到比例式,求出AD、OA、OB、OC、OD都是有理数,证△CDE∽△COD,得到比例式,求出CE、OE是有理数,根据三角形的面积公式求出DE是有理数,即可得到答案.
本题主要考查对圆周角定理,三角形的面积,相似三角形的性质和判定等知识点的理解和掌握,综合运用这些性质进行推理是解此题的关键.
找相似题