试题
题目:
如图,D,E是等边△ABC两边上的两个点,且AE=CD,连接BE,与AD交于点P,过点B作BQ⊥AD于Q,那么BP:PQ=
2:1
2:1
.
答案
2:1
解:在△ABE和△CAD中,
AE=CD
∠DCA=∠EAB=60°
AB=CA
,
∴△ABE≌△CAD,(SAS)
∴∠CAD=∠ABE,
∵∠CAD+∠PAB=60°,
∴∠BPQ=∠BAP+∠ABE=∠CAD+∠PAB=60°,
∴在直角△BPQ中,PQ:BP=sin30°=1:2,
∴BP:PQ=2:1.
故答案为 2:1.
考点梳理
考点
分析
点评
专题
相似三角形的判定与性质;等边三角形的性质.
易证△ABE≌△CAD,即可求得∠CAD=∠ABE,进而可以求得∠BPQ=60°,根据特殊角的三角函数值即可求得BP:PQ的值,即可解题.
本题考查了全等三角形的判定和全等三角形对应角相等的性质,特殊角的三角函数值,三角函数在直角三角形中的运用,本题中求∠BPQ=60°是解题的关键.
计算题.
找相似题
(2013·重庆)如图,在平行四边形ABCD中,点E在AD上,连接CE并延长与BA的延长线交于点F,若AE=2ED,CD=3cm,则AF的长为( )
(2013·雅安)如图,DE是△ABC的中位线,延长DE至F使EF=DE,连接CF,则S
△CEF
:S
四边形BCED
的值为( )
(2013·新疆)如图,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2cm,D为BC的中点,若动点E以1cm/s的速度从A点出发,沿着A→B→A的方向运动,设E点的运动时间为t秒(0≤t<6),连接DE,当△BDE是直角三角形时,t的值为( )
(2013·无锡)如图,梯形ABCD中,AD∥BC,对角线AC、BD相交于O,AD=1,BC=4,则△AOD与△BOC的面积比等于( )
(2013·台湾)如图,将一张直角三角形纸片沿虚线剪成甲、乙、丙三块,其中甲、丙为梯形,乙为三角形.根据图中标示的边长数据,比较甲、乙、丙的面积大小,下列判断何者正确?( )