试题

题目:
青果学院如图,在平行四边形ABCD中,点E在边BC上,EC=2BE,连接AE交BD于点F,若△BFE的面积为2,则△AFD的面积为
18
18

答案
18

解:∵ABCD是平行四边形,
∴AD∥BC,AD=BC,
∴△ADF∽△EBF,
∵EC=2BE,
∴BC=3BE,
即:AD=3BE,
∴S△AFD=9S△EFB=18.
故答案为:18.
考点梳理
相似三角形的判定与性质;平行四边形的性质.
根据四边形ABCD是平行四边形得到BC∥AD,判定△ADF∽△EBF,然后用相似三角形面积的比等于相似比的平方求出△AFD的面积.
本题考查的是相似三角形的判定与性质,根据平行四边形的性质,得到AD与BC平行且相等,得到相似三角形,然后用相似三角形的性质,相似三角形面积的比等于相似比的平方求出三角形的面积.
计算题.
找相似题