试题
题目:
如图,Q为正方形ABCD的CD边上一点,CQ=1,DQ=2,P为BC上一点,若PQ⊥AQ,则CP=
2
3
2
3
.
答案
2
3
解:∵PQ⊥AQ,
∴∠DQA+∠CQP=180°-90°=90°;
又∵四边形ABCD是正方形,
∴∠DAQ+∠DQA=90°,
∴∠CQP=∠DAQ,
∴ADQ∽△QCP,
∴
DQ
CP
=
AD
QC
;
∵CQ=1,DQ=2,
∴AD=DC=3;
∴CP=
2
3
;
故答案:
2
3
.
考点梳理
考点
分析
点评
专题
相似三角形的判定与性质;正方形的性质.
证明△ADQ∽△QCP:已知的条件有∠C=∠D=90°,那么只要得出另外两组对应角相等即可得出两三角形相似,因为∠DQA+∠CQP=180°-90°=90°,而∠DAQ+∠DQA=90°,因此∠CQP=∠DAQ,那么就构成了两三角形相似的条件;然后由相似三角形的对应边成比例、正方形的四条边都相等及已知条件CQ=1,DQ=2求解即可.
本题主要考查了正方形的性质、相似三角形的判定与性质.在求相似比时,一定要找对相似三角形的对应边.
证明题.
找相似题
(2013·重庆)如图,在平行四边形ABCD中,点E在AD上,连接CE并延长与BA的延长线交于点F,若AE=2ED,CD=3cm,则AF的长为( )
(2013·雅安)如图,DE是△ABC的中位线,延长DE至F使EF=DE,连接CF,则S
△CEF
:S
四边形BCED
的值为( )
(2013·新疆)如图,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2cm,D为BC的中点,若动点E以1cm/s的速度从A点出发,沿着A→B→A的方向运动,设E点的运动时间为t秒(0≤t<6),连接DE,当△BDE是直角三角形时,t的值为( )
(2013·无锡)如图,梯形ABCD中,AD∥BC,对角线AC、BD相交于O,AD=1,BC=4,则△AOD与△BOC的面积比等于( )
(2013·台湾)如图,将一张直角三角形纸片沿虚线剪成甲、乙、丙三块,其中甲、丙为梯形,乙为三角形.根据图中标示的边长数据,比较甲、乙、丙的面积大小,下列判断何者正确?( )