答案
证明:
(1)∵·ABCD中,DE⊥BC,∠DBC=45°,
∴∠DEC=∠BEH=90°,DE=BE.
∵∠EBH+∠BHE=90°,∠DHF+∠CDE=90°,
∴∠EBH=∠EDC.
∴△BEH≌△DEC.
∴BH=DC.
∵DC=AB,
∴AB=BH.(5分)
(2)∵四边形ABCD是平行四边形,
∴AG∥BC,∠A=∠C=∠BHE.
∴∠G=∠HBE.
∴△BEH∽△GBA.
∴BH·AB=EH·AG.
∵BH=DC=AB,
∴AB
2=GA·HE.(10分)
证明:
(1)∵·ABCD中,DE⊥BC,∠DBC=45°,
∴∠DEC=∠BEH=90°,DE=BE.
∵∠EBH+∠BHE=90°,∠DHF+∠CDE=90°,
∴∠EBH=∠EDC.
∴△BEH≌△DEC.
∴BH=DC.
∵DC=AB,
∴AB=BH.(5分)
(2)∵四边形ABCD是平行四边形,
∴AG∥BC,∠A=∠C=∠BHE.
∴∠G=∠HBE.
∴△BEH∽△GBA.
∴BH·AB=EH·AG.
∵BH=DC=AB,
∴AB
2=GA·HE.(10分)