试题

题目:
青果学院如图,平行四边形ABCD中,E是CD的延长线上一点,BE与AD交于点F,
DE
CD
=
1
2
,若△DEF的面积为1,则平行四边形ABCD的面积为
12
12

答案
12

解:∵AD∥BC,AB∥CD,
∴△EDF∽△ECB,△DEF∽△ABF,
∵DE=
1
2
DC,
DE
AB
=
1
2

DE
CE
=
1
3

∴△BCE的面积为1×9=9,
∴△ABF的面积为1×4=4,
∴平行四边形ABCD面积为9-1+4=12.
故答案为:12.
考点梳理
相似三角形的判定与性质;平行四边形的性质.
根据AD∥BC,AB∥CD,即可判定△EDF∽△ECB,△DEF∽△ABF,根据DE=
1
2
DC即可求得△BCE的面积和△ABF的面积,即可计算平行四边形的面积.
本题考查了相似三角形的判定,相似三角形对应边比值相等的性质,本题中求△BCE的面积和△ABF的面积是解题的关键.
找相似题