试题
题目:
如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,直角∠MON的顶点O在AB上,OM、ON分别交CA、CB于点P、Q,∠MON绕点O任意旋转.当
OA
OB
=
1
2
时,
OP
OQ
的值为
3
2
3
2
.(用含n的式子表示)
答案
3
2
解:过点O作OH⊥AC于H,OG⊥BC于G,
∴∠OHP=∠OGQ=90°.
∵∠ACB=90°,
∴四边形HCGO为矩形,
∴∠HOG=90°,
∴∠HOP=∠GOQ,
∴△PHO∽△QGO,
∴
OH
GO
=
OP
OQ
.
∵
OA
OB
=
1
2
,设OA=x,则OB=2x,且∠ABC=30°,
∴AH=
1
2
x,OG=x.
在Rt△AHO中,由勾股定理,得
OH=
3
2
x,
∴
3
2
x
x
=
OP
OQ
,
∴
OP
OQ
=
3
2
.
故答案为:
3
2
.
考点梳理
考点
分析
点评
相似三角形的判定与性质;含30度角的直角三角形;旋转的性质.
如图,过点O作OH⊥AC于H,OG⊥BC于G,由条件可以表示出HO、GO的值,通过证明△PHO∽△QGO由相似三角形的性质就可以求出结论.
本题考查了相似三角形的判定与性质,勾股定理的运用,矩形的性质,含30度角的直角三角形的性质.
找相似题
(2013·重庆)如图,在平行四边形ABCD中,点E在AD上,连接CE并延长与BA的延长线交于点F,若AE=2ED,CD=3cm,则AF的长为( )
(2013·雅安)如图,DE是△ABC的中位线,延长DE至F使EF=DE,连接CF,则S
△CEF
:S
四边形BCED
的值为( )
(2013·新疆)如图,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2cm,D为BC的中点,若动点E以1cm/s的速度从A点出发,沿着A→B→A的方向运动,设E点的运动时间为t秒(0≤t<6),连接DE,当△BDE是直角三角形时,t的值为( )
(2013·无锡)如图,梯形ABCD中,AD∥BC,对角线AC、BD相交于O,AD=1,BC=4,则△AOD与△BOC的面积比等于( )
(2013·台湾)如图,将一张直角三角形纸片沿虚线剪成甲、乙、丙三块,其中甲、丙为梯形,乙为三角形.根据图中标示的边长数据,比较甲、乙、丙的面积大小,下列判断何者正确?( )