试题

题目:
青果学院如图,⊙O是△ABC的外接圆,且AB=AC,弦AD交BC于点E,AE=4,ED=2,求AB的长.
答案
青果学院解:连接BD,如图,AB=AC,
AB
=
AC

∴∠ABE=∠D(等弧所对的圆周角相等),(3分)
又∠BAE=∠BAD(公共角),
∴△ABE∽△ADB(AA),
AB
AD
=
AE
AB
(相似三角形的对应边成比例),(6分)
∴AB2=AD·AE,又AE=4,ED=2,得AD=6,(7分)
∴AB=2
6
.       (9分)
青果学院解:连接BD,如图,AB=AC,
AB
=
AC

∴∠ABE=∠D(等弧所对的圆周角相等),(3分)
又∠BAE=∠BAD(公共角),
∴△ABE∽△ADB(AA),
AB
AD
=
AE
AB
(相似三角形的对应边成比例),(6分)
∴AB2=AD·AE,又AE=4,ED=2,得AD=6,(7分)
∴AB=2
6
.       (9分)
考点梳理
相似三角形的判定与性质;圆心角、弧、弦的关系.
连接BD构造相似三角形△ABE∽△ADB,然后根据相似三角形的对应边成比例求得AB2=AD·AE,从而求得AB的长度.
本题综合考查了相似三角形的判定与性质、圆周角定理.圆心角与它所对的弧、所对的弦之间的关系:这三个量中,若有一个量相等,则其它的量两个量也相等.
找相似题