试题
题目:
(2012·奉贤区二模)已知△ABC中,点G是△ABC的重心,过点G作DE∥BC,与AB相交于点D,与AC相交于点E,如果△ABC的面积为9.那么△ADE的面积是
4
4
.
答案
4
解:如图所示,∵DE∥BC,
∴△ADE∽△ABC,
∵点G是△ABC的重心,
∴AG=2GF,
∴AG=
2
3
AF,
∴
AG
AF
=
2
3
,
即△ADE和△ABC的相似比为
2
3
,
△ADE的面积
△ABC的面积
=(
2
3
)
2
=
4
9
,
∵△ABC的面积为9,
∴△ADE的面积=
4
9
×9=4.
故答案为:4.
考点梳理
考点
分析
点评
三角形的重心;相似三角形的判定与性质.
根据DE∥BC判断出△ADE和△ABC相似,再根据重心到顶点的距离等于到对边中点的距离的2倍,求出两三角形对应中线的比,也就是相似比,再根据相似三角形面积的比等于相似比的平方列式计算即可得解.
本题考查了三角形的重心,相似三角形的判定与性质,熟记三角形的重心到顶点的距离等于到对边中点的距离的2倍求出两三角形的对应中线的比,也就是相似比是解题的关键.
找相似题
(2013·重庆)如图,在平行四边形ABCD中,点E在AD上,连接CE并延长与BA的延长线交于点F,若AE=2ED,CD=3cm,则AF的长为( )
(2013·雅安)如图,DE是△ABC的中位线,延长DE至F使EF=DE,连接CF,则S
△CEF
:S
四边形BCED
的值为( )
(2013·新疆)如图,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2cm,D为BC的中点,若动点E以1cm/s的速度从A点出发,沿着A→B→A的方向运动,设E点的运动时间为t秒(0≤t<6),连接DE,当△BDE是直角三角形时,t的值为( )
(2013·无锡)如图,梯形ABCD中,AD∥BC,对角线AC、BD相交于O,AD=1,BC=4,则△AOD与△BOC的面积比等于( )
(2013·台湾)如图,将一张直角三角形纸片沿虚线剪成甲、乙、丙三块,其中甲、丙为梯形,乙为三角形.根据图中标示的边长数据,比较甲、乙、丙的面积大小,下列判断何者正确?( )