答案

(1)证明:连AB,
∵
的中点为M,
∴∠BAM=∠MAD,
∵∠ABF+∠BAF+∠AFB=∠AMD+∠MAD+∠ADM=180°,
∴∠AFB=∠ADM,
∵∠BAF=∠BCE,
∴∠ECF=∠MAD,
∴△CEF∽△AMD,
∴
=,
∴AM·EF=DM·CE;
(2)证明:∵∠C=∠BAF,∠BAF=∠BDM,
∴∠C=∠BDM,
∴CE∥DM,
∴
=,
∵△CEF∽△AMD,
∴
=,
∴
=
·
=
(3)解:∵BC=5,BD=7,
∴CD=BC+BD=12,
∵CF=2DF,
∴CF=8,FD=4,
∵△CEF∽△AMD,
∴
=,
∵CE∥DM,
∴
=,
∴
=,
∴
=∴DM=DF=4
∵AM=4MF=8,
∴MF=2,
∴CE=8.

(1)证明:连AB,
∵
的中点为M,
∴∠BAM=∠MAD,
∵∠ABF+∠BAF+∠AFB=∠AMD+∠MAD+∠ADM=180°,
∴∠AFB=∠ADM,
∵∠BAF=∠BCE,
∴∠ECF=∠MAD,
∴△CEF∽△AMD,
∴
=,
∴AM·EF=DM·CE;
(2)证明:∵∠C=∠BAF,∠BAF=∠BDM,
∴∠C=∠BDM,
∴CE∥DM,
∴
=,
∵△CEF∽△AMD,
∴
=,
∴
=
·
=
(3)解:∵BC=5,BD=7,
∴CD=BC+BD=12,
∵CF=2DF,
∴CF=8,FD=4,
∵△CEF∽△AMD,
∴
=,
∵CE∥DM,
∴
=,
∴
=,
∴
=∴DM=DF=4
∵AM=4MF=8,
∴MF=2,
∴CE=8.