试题
题目:
如图,以正方形ABCD的边AB为直径作⊙O,E是⊙O上的一点,EF⊥AB于F,AF>
BF,作直线DE交BC于点G.若正方形的边长为10,EF=4.
(1)分别求AF、BF的长.
(2)求证:DG是⊙O的切线.
答案
(1)解:连接OE.
∵正方形边长为10,AB是直径,
∴OB=OE=5.
∵EF⊥AB,EF=4,
∴OF=
5
2
-
4
2
=3,
∴BF=2,AF=8;
(2)证明:连接OD,作EH⊥AD于H点.
∵四边形AFED为直角梯形,
∴EH=AF=8,HD=10-4=6.
∴DE=
6
2
+
8
2
=10.
∴AD=DE.
又OA=OE,OD公共边,
∴△OAD≌△OED,
∴∠OED=∠OAD=90°,
∴DG是⊙O的切线.
(1)解:连接OE.
∵正方形边长为10,AB是直径,
∴OB=OE=5.
∵EF⊥AB,EF=4,
∴OF=
5
2
-
4
2
=3,
∴BF=2,AF=8;
(2)证明:连接OD,作EH⊥AD于H点.
∵四边形AFED为直角梯形,
∴EH=AF=8,HD=10-4=6.
∴DE=
6
2
+
8
2
=10.
∴AD=DE.
又OA=OE,OD公共边,
∴△OAD≌△OED,
∴∠OED=∠OAD=90°,
∴DG是⊙O的切线.
考点梳理
考点
分析
点评
专题
相似三角形的判定与性质;正方形的性质;圆周角定理;切线的判定.
(1)已知直径易知半径.连接OE,在Rt△OEF中运用勾股定理求OF,再求AF,BF;
(2)欲证DG为切线,则证OE⊥DG.连接OD,证明△OAD≌△OED即可.已有两边对应相等,只需证明DE=AD.为此作EH⊥AD于H,运用勾股定理可证.
此题考查了正方形的性质、圆的切线的判定、勾股定理等知识点,综合性较强,难度较大.
几何综合题.
找相似题
(2013·重庆)如图,在平行四边形ABCD中,点E在AD上,连接CE并延长与BA的延长线交于点F,若AE=2ED,CD=3cm,则AF的长为( )
(2013·雅安)如图,DE是△ABC的中位线,延长DE至F使EF=DE,连接CF,则S
△CEF
:S
四边形BCED
的值为( )
(2013·新疆)如图,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2cm,D为BC的中点,若动点E以1cm/s的速度从A点出发,沿着A→B→A的方向运动,设E点的运动时间为t秒(0≤t<6),连接DE,当△BDE是直角三角形时,t的值为( )
(2013·无锡)如图,梯形ABCD中,AD∥BC,对角线AC、BD相交于O,AD=1,BC=4,则△AOD与△BOC的面积比等于( )
(2013·台湾)如图,将一张直角三角形纸片沿虚线剪成甲、乙、丙三块,其中甲、丙为梯形,乙为三角形.根据图中标示的边长数据,比较甲、乙、丙的面积大小,下列判断何者正确?( )