试题

题目:
如图,在△ABC中,AC=BC,∠ACB=90°,CD⊥AB,垂足为D,点E在AC上,BE交CD于点G,EF⊥BE交AB于点F,
(1)如图1:若EA=CE,探索线段EF与EG的数量关系,并证明你的结论;
(2)如图2:若EA=2CE,探索线段EF与EG的数量关系,并证明你的结论;
(3)若EA=kCE,探索线段EF与EG的数量关系,请直接写出你的结论.
青果学院
答案
青果学院证明:作EH⊥CD,EQ⊥AB,
∵AC=BC,CD⊥AB,∠ACB=90°,
∴∠ADC=90°,∠A=∠ACD=45°,
∵EH⊥CD,EQ⊥AB,
∴∠AQE=∠EHC=90°,
又∵EA=CE,
∴△AEQ≌△ECH,
∴EQ=EH,
∵EH⊥CD,EQ⊥AB,CD⊥AB,
∴四边形EQDH是矩形,
∴∠QEH=90°,
∴∠FEQ=∠GEH=90°-∠QEB,
又∵∠EQF=∠EHG=90°,EQ=EH,
∴Rt△EFQ≌Rt△EGH,
∴EF=EG;
(2)作EH⊥CD,EQ⊥AB(如图2),
青果学院∵EH⊥CD,EQ⊥AB,CD⊥AB,
∴四边形EQDH是矩形,
∴∠QEH=90°,
∴∠FEQ=∠GEH=90°-∠QEB,
又∵∠EQF=∠EHG=90°,
∴△EFQ∽△EGH,
EF
EG
=
EQ
EH

∵AC=BC,CD⊥AB,
∴∠ADC=90°,∠A=∠ACD=45°,
∵EH⊥CD,EQ⊥AB,
∴∠AQE=∠EHC=90°,
∴△AQE和△EHC是等腰直角三角形,
∴△AQE∽△EHC,
EA
EC
=
EQ
EH
=
2
1

EF
EG
=2,
∴EF=2EG;
(3)EF=kEG.
青果学院证明:作EH⊥CD,EQ⊥AB,
∵AC=BC,CD⊥AB,∠ACB=90°,
∴∠ADC=90°,∠A=∠ACD=45°,
∵EH⊥CD,EQ⊥AB,
∴∠AQE=∠EHC=90°,
又∵EA=CE,
∴△AEQ≌△ECH,
∴EQ=EH,
∵EH⊥CD,EQ⊥AB,CD⊥AB,
∴四边形EQDH是矩形,
∴∠QEH=90°,
∴∠FEQ=∠GEH=90°-∠QEB,
又∵∠EQF=∠EHG=90°,EQ=EH,
∴Rt△EFQ≌Rt△EGH,
∴EF=EG;
(2)作EH⊥CD,EQ⊥AB(如图2),
青果学院∵EH⊥CD,EQ⊥AB,CD⊥AB,
∴四边形EQDH是矩形,
∴∠QEH=90°,
∴∠FEQ=∠GEH=90°-∠QEB,
又∵∠EQF=∠EHG=90°,
∴△EFQ∽△EGH,
EF
EG
=
EQ
EH

∵AC=BC,CD⊥AB,
∴∠ADC=90°,∠A=∠ACD=45°,
∵EH⊥CD,EQ⊥AB,
∴∠AQE=∠EHC=90°,
∴△AQE和△EHC是等腰直角三角形,
∴△AQE∽△EHC,
EA
EC
=
EQ
EH
=
2
1

EF
EG
=2,
∴EF=2EG;
(3)EF=kEG.
考点梳理
相似三角形的判定与性质;全等三角形的判定与性质;等腰直角三角形.
(1)作EH⊥CD,EQ⊥AB,利用AAS先证△AEQ≌△ECH,易得EQ=EH,把EQ=EH作为一个条件,再利用ASA易证Rt△EFQ≌Rt△EGH,从而有EF=EG;
(2)作EH⊥CD,EQ⊥AB,先证△EFQ∽△EGH,易得
EF
EG
=
EQ
EH
,再证△AQE∽△EHC,那么
EA
EC
=
EQ
EH
=
2
1
,等量代换易得
EF
EG
=2,于是EF=2EG;
(3)根据(1)(2)的结论易得EF=kEG.
本题考查了等腰直角三角形的判定和性质、相似三角形的判定和性质、全等三角形的判定和性质、矩形的判定和性质,解题的关键是作辅助线,构造全等三角形和相似三角形,并且证明四边形EQDH是矩形.
探究型.
找相似题