试题
题目:
如图,在梯形ABCD中,AD∥BC,AB⊥AD,对角线BD⊥DC.
(1)求证:△ABD∽△DCB;
(2)若BD=7,AD=5,求BC的长.
答案
解:(1)由题意得∠A=∠BDC=90°
∠C+∠DBC=∠DBC+∠ABD
∴∠ABD=∠C
∴△ABD∽△DCB;
(2)根据对应线段成比例可得:
BC
BD
=
BD
AD
又∵BD=7,AD=5
∴可得BC=
49
5
.
解:(1)由题意得∠A=∠BDC=90°
∠C+∠DBC=∠DBC+∠ABD
∴∠ABD=∠C
∴△ABD∽△DCB;
(2)根据对应线段成比例可得:
BC
BD
=
BD
AD
又∵BD=7,AD=5
∴可得BC=
49
5
.
考点梳理
考点
分析
点评
专题
直角梯形;相似三角形的判定与性质.
(1)由题意得∠A=90°=∠BDC,通过证明∠C=∠ABD,可证得:△ABD∽△DCB.
(2)由(1)得:△ABD∽△DCB,根据对应线段成比例可求出BC的长.
本题考查了相似三角形的判定和性质,关键是找出相等的两个角证三角形的相似.
几何综合题.
找相似题
(2013·重庆)如图,在平行四边形ABCD中,点E在AD上,连接CE并延长与BA的延长线交于点F,若AE=2ED,CD=3cm,则AF的长为( )
(2013·雅安)如图,DE是△ABC的中位线,延长DE至F使EF=DE,连接CF,则S
△CEF
:S
四边形BCED
的值为( )
(2013·新疆)如图,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2cm,D为BC的中点,若动点E以1cm/s的速度从A点出发,沿着A→B→A的方向运动,设E点的运动时间为t秒(0≤t<6),连接DE,当△BDE是直角三角形时,t的值为( )
(2013·无锡)如图,梯形ABCD中,AD∥BC,对角线AC、BD相交于O,AD=1,BC=4,则△AOD与△BOC的面积比等于( )
(2013·台湾)如图,将一张直角三角形纸片沿虚线剪成甲、乙、丙三块,其中甲、丙为梯形,乙为三角形.根据图中标示的边长数据,比较甲、乙、丙的面积大小,下列判断何者正确?( )