试题
题目:
(2013·沙湾区模拟)如图,△ABC的外接⊙O的半径为R,高为AD,∠BAC的平分线交⊙O、BC于E、P,EF切⊙O交AC的延长线于F.
下列结论:①AC·AB=2R·AD;②EF∥BC;③CF·AC=EF·CP;④
CP
BP
=
SinB
SinF
.
请你把正确结论的番号都写上
①②③④
①②③④
.(填错一个该题得0分)
答案
①②③④
解:(1)过A作直径AN,连CN.则∠ACN=90°,
∵AD⊥BC,
∴∠ADB=90°,
又∵∠ANC=∠B,
∴直角△ACN∽直角△ADB,而AN=2R,
∴AC·AB=2R·AD;
(2)连接OE,
∵∠BAC的平分线交⊙O于E,
∴弧CE=弧BE,∴OE⊥BC,
又∵FE是⊙O的切线,
∴FE⊥OE,
∴EF∥BC;
(3)连CE,
∵EF∥BC,
∴∠1=∠F,∠FEC=∠ECM,
又∵∠ECM=∠EAB=∠CAM,
∴△FCE∽△CMA,
∴CF·AC=EF·CM;
(4)在直角三角形ADB中,sinB=
AD
BD
,
在直角三角形ADC中,sin∠ACD=
AD
DC
,而EF∥BC,∠ACD=∠F,即sinF=
AD
AC
,
∴
AC
BC
=
SinB
SinF
,而AM为角平分线,所以
CM
AM
=
AC
BC
,
∴
CP
BP
=
SinB
SinF
,
∴①②③④都正确,
故答案为①②③④.
考点梳理
考点
分析
点评
切线的性质;相似三角形的判定与性质.
(1)过A作直径AN,利用直角△ACN∽直角△ADB,可得①;
(2)连接OE,由角平分线可得弧相等,即E为BC弧的中点,则OE与BC垂直,而EF是切线即EF⊥BC,得②;(3)连CE,证明△FCE∽△CMA,可得③;
(4)先把正弦化成线段的比,得到
CM
AM
=
AC
BC
而这是角平分线定理,所以得④.
本题考查了相似三角形的判定和性质,解题的关键是掌握使用三角形相似证明等积式或比例式.熟悉圆周角定理,角平分线定理,三角函数的定义以及切线的性质等.
找相似题
(2013·重庆)如图,在平行四边形ABCD中,点E在AD上,连接CE并延长与BA的延长线交于点F,若AE=2ED,CD=3cm,则AF的长为( )
(2013·雅安)如图,DE是△ABC的中位线,延长DE至F使EF=DE,连接CF,则S
△CEF
:S
四边形BCED
的值为( )
(2013·新疆)如图,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2cm,D为BC的中点,若动点E以1cm/s的速度从A点出发,沿着A→B→A的方向运动,设E点的运动时间为t秒(0≤t<6),连接DE,当△BDE是直角三角形时,t的值为( )
(2013·无锡)如图,梯形ABCD中,AD∥BC,对角线AC、BD相交于O,AD=1,BC=4,则△AOD与△BOC的面积比等于( )
(2013·台湾)如图,将一张直角三角形纸片沿虚线剪成甲、乙、丙三块,其中甲、丙为梯形,乙为三角形.根据图中标示的边长数据,比较甲、乙、丙的面积大小,下列判断何者正确?( )