试题
题目:
(1997·陕西)如图,已知矩形ABCD中,AB=10,BC=12,E为DC的中点,AF⊥BE于点F,则AF=
120
13
120
13
.
答案
120
13
解:∵四边形ABCD是矩形,
∴CD=AB=10,∠ABC=∠C=90°,
∴∠ABF+∠CBE=90°,
∵E为DC的中点,
∴EC=
1
2
CD=5,
∴BE=
B
C
2
+C
E
2
=
1
2
2
+
5
2
=13,
∵AF⊥BE,
∴∠AFB=90°,
∴∠ABF+∠BAF=90°,
∴∠BAF=∠CBE,∠AFB=∠C=90°,
∴△ABF∽△BEC,
∴AB:BE=AF:BC,
∴10:13=AF:12,
解得:AF=
120
13
.
故答案为:
120
13
.
考点梳理
考点
分析
点评
相似三角形的判定与性质;勾股定理;矩形的性质.
由矩形ABCD中,AB=10,BC=12,E为DC的中点,由勾股定理可求得BE的长,又由AF⊥BE,易证得△ABF∽△BEC,然后由相似三角形的对应边成比例,求得AF的长.
此题考查了相似三角形的判定与性质、矩形的性质以及勾股定理.此题难度适中,注意掌握数形结合思想的应用.
找相似题
(2013·重庆)如图,在平行四边形ABCD中,点E在AD上,连接CE并延长与BA的延长线交于点F,若AE=2ED,CD=3cm,则AF的长为( )
(2013·雅安)如图,DE是△ABC的中位线,延长DE至F使EF=DE,连接CF,则S
△CEF
:S
四边形BCED
的值为( )
(2013·新疆)如图,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2cm,D为BC的中点,若动点E以1cm/s的速度从A点出发,沿着A→B→A的方向运动,设E点的运动时间为t秒(0≤t<6),连接DE,当△BDE是直角三角形时,t的值为( )
(2013·无锡)如图,梯形ABCD中,AD∥BC,对角线AC、BD相交于O,AD=1,BC=4,则△AOD与△BOC的面积比等于( )
(2013·台湾)如图,将一张直角三角形纸片沿虚线剪成甲、乙、丙三块,其中甲、丙为梯形,乙为三角形.根据图中标示的边长数据,比较甲、乙、丙的面积大小,下列判断何者正确?( )