试题
题目:
如图,△ABC内接于⊙O,且AB=AC,直径AD交BC于点E,F是OE的中点.
(1)如果BD∥CF,求证:AE=5DE;
(2)在(1)的条件下,若BC=
2
5
,求线段CD的长度.
答案
解:(1)∵AD是⊙O直径,
∴∠ABD=∠ACD=90°.
又AB=AC,AD=AD,
∴△ABD≌△ACD,
∴BD=CD.
由垂径定理可得:BE=CE,且BC⊥AD.
∵BD∥CF,
∴△BDE≌△CFE,
∴CF=BD=CD.
又BC⊥AD,
∴E是DF中点,
又F是OE中点,
∴OF=FE=ED=
1
3
OA
,即AE=5DE.
(2)∵BC=
2
5
,由(1)知BE=CE=
5
,
由△CDE∽△ACE,可得CE
2
=DE×AE,
∴DE=1,AE=5
由△CDE∽△ACD,可得
CD
2
=DE×AD,即CD
2
=6,
∴
CD=
6
.
解:(1)∵AD是⊙O直径,
∴∠ABD=∠ACD=90°.
又AB=AC,AD=AD,
∴△ABD≌△ACD,
∴BD=CD.
由垂径定理可得:BE=CE,且BC⊥AD.
∵BD∥CF,
∴△BDE≌△CFE,
∴CF=BD=CD.
又BC⊥AD,
∴E是DF中点,
又F是OE中点,
∴OF=FE=ED=
1
3
OA
,即AE=5DE.
(2)∵BC=
2
5
,由(1)知BE=CE=
5
,
由△CDE∽△ACE,可得CE
2
=DE×AE,
∴DE=1,AE=5
由△CDE∽△ACD,可得
CD
2
=DE×AD,即CD
2
=6,
∴
CD=
6
.
考点梳理
考点
分析
点评
专题
垂径定理;全等三角形的应用;相似三角形的判定与性质.
(1)首先根据HL证明△ABD≌△ACD,得BD=CD,根据垂径定理,得BE=CE,且BC⊥AD,根据平行,得内错角相等,从而根据ASA证明△BDE≌△CFE,得DE=EF,从而证明结论;
(2)根据△CDE∽△ACE,结合(1)的结论即可求解.
此题综合运用了全等三角形的判定和性质、垂径定理、相似三角形的判定和性质.
计算题;证明题.
找相似题
(2013·重庆)如图,在平行四边形ABCD中,点E在AD上,连接CE并延长与BA的延长线交于点F,若AE=2ED,CD=3cm,则AF的长为( )
(2013·雅安)如图,DE是△ABC的中位线,延长DE至F使EF=DE,连接CF,则S
△CEF
:S
四边形BCED
的值为( )
(2013·新疆)如图,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2cm,D为BC的中点,若动点E以1cm/s的速度从A点出发,沿着A→B→A的方向运动,设E点的运动时间为t秒(0≤t<6),连接DE,当△BDE是直角三角形时,t的值为( )
(2013·无锡)如图,梯形ABCD中,AD∥BC,对角线AC、BD相交于O,AD=1,BC=4,则△AOD与△BOC的面积比等于( )
(2013·台湾)如图,将一张直角三角形纸片沿虚线剪成甲、乙、丙三块,其中甲、丙为梯形,乙为三角形.根据图中标示的边长数据,比较甲、乙、丙的面积大小,下列判断何者正确?( )