试题
题目:
如图,已知Rt△ABC中,∠C=90°,BC=4,AC=4,现将△ABC沿CB方向平移到△A′B′C′的位置,若平移距离为3.
(1)求△ABC与△A′B′C′的重叠部分的面积;
(2)若平移距离为x(0≤x≤4),求△ABC与△A′B′C′的重叠部分的面积y,则y与x有怎样关系式.
答案
解:(1)∵∠C=90°,BC=4,AC=4,
∴△ABC是等腰直角三角形,
∴∠ABC=45°,
∵△A′B′C′是△ABC平移得到的,
∴△ABC≌△A′B′C′,
∴∠C=∠A′C′B′=90°,
∴∠BOC′=45°,
∴△BOC′是等腰直角三角形,
∵BC′=BC-CC′=4-3=1,
∴S
△BOC′
=
1
2
×1×1=
1
2
,
即S
阴影
=
1
2
;
(2)根据(1)可知两个三角形重合部分是等腰直角三角形,
那么S
阴影
=
1
2
(4-x)
2
.
解:(1)∵∠C=90°,BC=4,AC=4,
∴△ABC是等腰直角三角形,
∴∠ABC=45°,
∵△A′B′C′是△ABC平移得到的,
∴△ABC≌△A′B′C′,
∴∠C=∠A′C′B′=90°,
∴∠BOC′=45°,
∴△BOC′是等腰直角三角形,
∵BC′=BC-CC′=4-3=1,
∴S
△BOC′
=
1
2
×1×1=
1
2
,
即S
阴影
=
1
2
;
(2)根据(1)可知两个三角形重合部分是等腰直角三角形,
那么S
阴影
=
1
2
(4-x)
2
.
考点梳理
考点
分析
点评
相似三角形的判定与性质;平移的性质.
(1)由于∠C=90°,BC=4,AC=4,易知△ABC是等腰直角三角形,于是∠ABC=45°,又△A′B′C′是△ABC平移得到的,那么∠C=∠A′C′B′=90°,进而可求∠BOC′=45°,从而易证△BOC′是等腰直角三角形,于是利用三角形面积公式可求S
△BOC′
;
(2)根据(1)易知△ABC与△A′B′C′的重叠部分是等腰直角三角形,从而可求阴影部分的面积.
本题考查了平移的性质、等腰直角三角形的判定和性质,解题的关键是证明△BOC′是等腰直角三角形.
找相似题
(2013·重庆)如图,在平行四边形ABCD中,点E在AD上,连接CE并延长与BA的延长线交于点F,若AE=2ED,CD=3cm,则AF的长为( )
(2013·雅安)如图,DE是△ABC的中位线,延长DE至F使EF=DE,连接CF,则S
△CEF
:S
四边形BCED
的值为( )
(2013·新疆)如图,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2cm,D为BC的中点,若动点E以1cm/s的速度从A点出发,沿着A→B→A的方向运动,设E点的运动时间为t秒(0≤t<6),连接DE,当△BDE是直角三角形时,t的值为( )
(2013·无锡)如图,梯形ABCD中,AD∥BC,对角线AC、BD相交于O,AD=1,BC=4,则△AOD与△BOC的面积比等于( )
(2013·台湾)如图,将一张直角三角形纸片沿虚线剪成甲、乙、丙三块,其中甲、丙为梯形,乙为三角形.根据图中标示的边长数据,比较甲、乙、丙的面积大小,下列判断何者正确?( )