试题

题目:
青果学院(2009·孝感)如图,点M是△ABC内一点,过点M分别作直线平行于△ABC的各边,所形成的三个小三角形△1,△2,△3(图中阴影部分)的面积分别是4,9和49.则△ABC的面积是
144
144

答案
144

青果学院解:过M作BC平行线交AB、AC于D、E,过M作AC平行线交AB、BC于F、H,过M作AB平行线交AC、BC于I、G,
∵△1、△2的面积比为4:9,△1、△3的面积比为4:49,
∴它们边长比为2:3:7,
又∵四边形BDMG与四边形CEMH为平行四边形,
∴DM=BG,EM=CH,
设DM为2x,
∴BC=(BG+GH+CH)=12x,
∴BC:DM=6:1,
S△ABC:S△FDM=36:1,
∴S△ABC=4×36=144.
故答案为:144.
考点梳理
相似三角形的判定与性质.
根据平行可得出三个三角形相似,再由它们的面积比得出相似比,设其中一边为一求知数,然后计算出最大的三角形与最小的三角形的相似比,从而求面积比.
本题主要考查了相似三角形的性质,相似三角形面积的比等于相似比的平方.
几何综合题;压轴题.
找相似题