试题
题目:
路边有一根电线杆AB和一块正方形广告牌,正方形边长为3米.有一天,小明发现,在太阳光照射下,电线杆顶端A的影子刚好落在正方形广告牌的顶点G处,而正方形广告牌的影子刚好落在地面上E点(如图),经测量有BC=6米,DE=4米.试求电线杆的高度.
答案
解:过点G作GH∥BC,
根据题意,四边形BCGH是矩形,
∴BH=CG=3米,
△AHG∽△FDE,
∴
AH
3
=
6
4
,
∴AH=
9
2
,
∴AB=
9
2
+3=7.5米.
故答案为:7.5米.
解:过点G作GH∥BC,
根据题意,四边形BCGH是矩形,
∴BH=CG=3米,
△AHG∽△FDE,
∴
AH
3
=
6
4
,
∴AH=
9
2
,
∴AB=
9
2
+3=7.5米.
故答案为:7.5米.
考点梳理
考点
分析
点评
专题
相似三角形的应用;相似三角形的判定与性质.
过点G作GH∥BC,可得四边形BCGH是矩形,然后且△AHG与△FDE相似,然后根据相似三角形对应边成比例列式求出AH的长度,再加上BH即可.
本题考查相似三角形性质的应用.解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立适当的数学模型来解决问题,作辅助线构造相似三角形是解题的关键.
应用题.
找相似题
(2013·重庆)如图,在平行四边形ABCD中,点E在AD上,连接CE并延长与BA的延长线交于点F,若AE=2ED,CD=3cm,则AF的长为( )
(2013·雅安)如图,DE是△ABC的中位线,延长DE至F使EF=DE,连接CF,则S
△CEF
:S
四边形BCED
的值为( )
(2013·新疆)如图,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2cm,D为BC的中点,若动点E以1cm/s的速度从A点出发,沿着A→B→A的方向运动,设E点的运动时间为t秒(0≤t<6),连接DE,当△BDE是直角三角形时,t的值为( )
(2013·无锡)如图,梯形ABCD中,AD∥BC,对角线AC、BD相交于O,AD=1,BC=4,则△AOD与△BOC的面积比等于( )
(2013·台湾)如图,将一张直角三角形纸片沿虚线剪成甲、乙、丙三块,其中甲、丙为梯形,乙为三角形.根据图中标示的边长数据,比较甲、乙、丙的面积大小,下列判断何者正确?( )