试题

题目:
青果学院(2011·嘉兴)如图,AB是半圆直径,半径OC⊥AB于点O,AD平分∠CAB交弧BC于点D,连接CD、OD,给出以下四个结论:①AC∥OD;②CE=OE;③△ODE∽△ADO;④2CD2=CE·AB.其中正确结论的序号是
①④
①④

答案
①④

解:①∵AB是半圆直径,
∴AO=OD,
∴∠OAD=∠ADO,
∵AD平分∠CAB交弧BC于点D,
∴∠CAD=∠DAO=
1
2
∠CAB,
∴∠CAD=∠ADO,
∴AC∥OD,青果学院
∴①正确.
②过点E作EF⊥AC,
∵OC⊥AB,AD平分∠CAB交弧BC于点D,
∴OE=EF,
在Rt△EFC中,CE>EF,
∴CE>OE,
∴②错误.
③∵在△ODE和△ADO中,只有∠ADO=∠EDO,
∵∠COD=2∠CAD=2∠OAD,
∴∠DOE≠∠DAO,
∴不能证明△ODE和△ADO相似,
∴③错误;
④∵AD平分∠CAB交弧BC于点D,
∴∠CAD=
1
2
×45°=22.5°,
∴∠COD=45°,
∵AB是半圆直径,
∴OC=OD,
∴∠OCD=∠ODC=67.5°
∵∠CAD=∠ADO=22.5°(已证),
∴∠CDE=∠ODC-∠ADO=67.5°-22.5°=45°,
∴△CED∽△CDO,
CD
CO
=
CE
CD

∴CD2=OC·CE=
1
2
AB·CE,
∴2CD2=CE·AB.
∴④正确.
综上所述,只有①④正确.
故答案为:①④.
考点梳理
相似三角形的判定与性质;三角形内角和定理;等腰三角形的判定;圆心角、弧、弦的关系;圆周角定理.
①根据等腰三角形的性质和角平分线的性质,利用等量代换求证∠CAD=∠ADO即可;
②过点E作EF⊥AC,根据角平分线上的点到角的两边的距离相等可得OE=EF,再根据直角三角形斜边大于直角边可证;
③两三角形中,只有一个公共角的度数相等,其它两角不相等,所以不能证明③△ODE∽△ADO;
④根据同弧所对的圆周角等于它所对的圆心角的一半,求出∠COD=45°,再利用等腰三角形的性质和三角形内角和定理求出∠CDE=45°,再求证△CED∽△CDO,利用其对应变成比例即可得出结论.
此题主要考查相似三角形的判定与性质,圆心角、弧、弦的关系,圆周角定理,等腰三角形的性质,三角形内角和定理等知识点的灵活运用,此题步骤繁琐,但相对而言,难易程度适中,很适合学生的训练是一道典型的题目.
压轴题.
找相似题