试题

题目:
青果学院(2013·百色)如图,在边长为10cm的正方形ABCD中,P为AB边上任意一点(P不与A、B两点重合),连结DP,过点P作PE⊥DP,垂足为P,交BC于点E,则BE的最大长度为
5
2
5
2
cm.
答案
5
2

青果学院解:设AP=x,BE=y.
如图,∵四边形ABCD是正方形,
∴∠A=∠B=90°
∵PE⊥DP,
∴∠2+∠3=90°,∠1+∠2=90°
∴∠1=∠3,
∴△ADP∽△BPE,
AD
BP
=
AP
BE
,即
10
10-x
=
x
y

∴y=-
1
10
x2+x=-
1
10
(x-5)2+
5
2
(0<y<10);
∴当x=5时,y有最大值
5
2

故答案是:
5
2
考点梳理
相似三角形的判定与性质;二次函数的最值;正方形的性质.
设AP=x,BE=y.通过△ABP∽△PCQ的对应边成比例得到
AD
BP
=
AP
BE
,所以
10
10-x
=
x
y
,即y=-
1
10
x2+x.利用“配方法”求该函数的最大值.
本题主要考查正方形的性质和二次函数的应用,关键在于理解题意运用三角形的相似性质求出y与x之间的函数关系,求最大值时,运用到“配方法”.
找相似题