试题

题目:
青果学院(2013·河池)如图,正方形ABCD的边长为4,E、F分别是BC、CD上的两个动点,且AE⊥EF.则AF的最小值是
5
5

答案
5

解:设BE=x,则EC=4-x,
∵AE⊥EF,
∴∠AEF=90°,
∴∠AEB+∠FEC=90°,
而∠AEB+∠BEA=90°,
∴∠BAE=∠FEC,
∴Rt△ABE∽Rt△ECF,
AB
EC
=
BE
FC
,即
4
4-x
=
x
FC
,解得FC=
x(4-x)
4

∴DF=4-FC=4-
x(4-x)
4
=
1
4
x2-x+4=
1
4
(x-2)2+3
当x=2时,DF有最小值3,
∵AF2=AD2+DF2
∴AF的最小值为
42+32
=5.
故答案为:5.
考点梳理
相似三角形的判定与性质;二次函数的最值;正方形的性质.
设BE=x,则EC=4-x,先利用等角的余角相等得到∠BAE=∠FEC,则可判断Rt△ABE∽Rt△ECF,利用相似比可表示出FC=
x(4-x)
4
,则DF=4-FC=4-
x(4-x)
4
=
1
4
x2-x+4=
1
4
(x-2)2+3,所以x=2时,DF有最小值3,而AF2=AD2+DF2,即DF最小时,AF最小,AF的最小值为
42+32
=5.
本题考查了相似三角形的判定与性质:有两组对应边的比相等,并且它们的夹角也相等,那么这两个三角形相似;相似三角形的对应角相等,对应边的比相等.也考查了正方形的性质以及二次函数的最值问题.
计算题.
找相似题