试题
题目:
如图,在正方形ABCD中,P是CD上一动点(点P与C、D不重合),三角板的直角顶点与点P重合,并且一条直角边始终经过点A,另一直角边与BC交于点E.
(1)△ADP与△PCE相似吗?如果相似,请写出证明过程.
(2)当点P位于CD的中点时,求△PCE与△ADP的面积比.
答案
解:(1)△ADP∽△PCE(1分)
证明:∵四边形ABCD是正方形,
∴∠D=∠C=90°(2分)
∴∠DAP+∠DPA=90°(3分)
又∵∠APE=90°,
∴∠CPE+∠DPA=90°,(4分)
∴∠DAP=∠CPE(6分)
∴△ADP∽△PCE;(7分)
(2)当点P位于CD的中点时,DP=PC=
1
2
DC=
1
2
AD(8分)
∵△ADP∽△PCE,
∴
S
△PCE
S
△ADP
=
P
C
2
A
D
2
=
(
1
2
AD)
2
A
D
2
=
1
4
.(10分)
解:(1)△ADP∽△PCE(1分)
证明:∵四边形ABCD是正方形,
∴∠D=∠C=90°(2分)
∴∠DAP+∠DPA=90°(3分)
又∵∠APE=90°,
∴∠CPE+∠DPA=90°,(4分)
∴∠DAP=∠CPE(6分)
∴△ADP∽△PCE;(7分)
(2)当点P位于CD的中点时,DP=PC=
1
2
DC=
1
2
AD(8分)
∵△ADP∽△PCE,
∴
S
△PCE
S
△ADP
=
P
C
2
A
D
2
=
(
1
2
AD)
2
A
D
2
=
1
4
.(10分)
考点梳理
考点
分析
点评
专题
相似三角形的判定与性质.
(1)由于∠APE是直角,易证得∠APD和∠CEP都是∠CPE的余角,所以这两角相等,由此可证得这两个直角三角形相似;
(2)若P是CD的中点,则CP:AD=1:2,即△CPE和△ADP的相似比是1:2;根据相似三角形的面积比等于相似比的平方,可求得两三角形的面积比.
此题主要考查了正方形的性质以及相似三角形的判定和性质.
几何综合题.
找相似题
(2013·重庆)如图,在平行四边形ABCD中,点E在AD上,连接CE并延长与BA的延长线交于点F,若AE=2ED,CD=3cm,则AF的长为( )
(2013·雅安)如图,DE是△ABC的中位线,延长DE至F使EF=DE,连接CF,则S
△CEF
:S
四边形BCED
的值为( )
(2013·新疆)如图,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2cm,D为BC的中点,若动点E以1cm/s的速度从A点出发,沿着A→B→A的方向运动,设E点的运动时间为t秒(0≤t<6),连接DE,当△BDE是直角三角形时,t的值为( )
(2013·无锡)如图,梯形ABCD中,AD∥BC,对角线AC、BD相交于O,AD=1,BC=4,则△AOD与△BOC的面积比等于( )
(2013·台湾)如图,将一张直角三角形纸片沿虚线剪成甲、乙、丙三块,其中甲、丙为梯形,乙为三角形.根据图中标示的边长数据,比较甲、乙、丙的面积大小,下列判断何者正确?( )