试题
题目:
如图,在正方形网格上有△ABC和△DEF.
(1)这两个三角形相似吗?如果相似,求出△ABC和△DEF的相似比;
(2)计算这两个图形的面积比;
(3)根据上面的计算结果,你有何猜想?
答案
解:(1)相似,
理由:∵AC=
2
,AB=2,BC=
10
,DF=2
2
,DE=4,EF=2
10
,
∴
AC
DF
=
AB
DE
=
BC
EF
=
1
2
,
∴△ABC∽△DEF;
(2)∵S
△ABC
=
1
2
×2×1=1,
S
△FDE
=
1
2
×4×2=4,
∴这两个图形的面积比为:1:4;
(3)根据上面的计算结果可得出:面积比等于相似比的平方.
解:(1)相似,
理由:∵AC=
2
,AB=2,BC=
10
,DF=2
2
,DE=4,EF=2
10
,
∴
AC
DF
=
AB
DE
=
BC
EF
=
1
2
,
∴△ABC∽△DEF;
(2)∵S
△ABC
=
1
2
×2×1=1,
S
△FDE
=
1
2
×4×2=4,
∴这两个图形的面积比为:1:4;
(3)根据上面的计算结果可得出:面积比等于相似比的平方.
考点梳理
考点
分析
点评
专题
相似三角形的判定与性质.
(1)根据网格得出两三角形的各边长度,进而根据各边的比值得出对应边的关系;
(2)利用网格求出两三角形面积即可;
(3)根据(2)中计算,即可猜想面积与相似比的关系.
此题主要考查了相似三角形的判定与性质,利用网格得出三角形各边长度是解题关键.
网格型.
找相似题
(2013·重庆)如图,在平行四边形ABCD中,点E在AD上,连接CE并延长与BA的延长线交于点F,若AE=2ED,CD=3cm,则AF的长为( )
(2013·雅安)如图,DE是△ABC的中位线,延长DE至F使EF=DE,连接CF,则S
△CEF
:S
四边形BCED
的值为( )
(2013·新疆)如图,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2cm,D为BC的中点,若动点E以1cm/s的速度从A点出发,沿着A→B→A的方向运动,设E点的运动时间为t秒(0≤t<6),连接DE,当△BDE是直角三角形时,t的值为( )
(2013·无锡)如图,梯形ABCD中,AD∥BC,对角线AC、BD相交于O,AD=1,BC=4,则△AOD与△BOC的面积比等于( )
(2013·台湾)如图,将一张直角三角形纸片沿虚线剪成甲、乙、丙三块,其中甲、丙为梯形,乙为三角形.根据图中标示的边长数据,比较甲、乙、丙的面积大小,下列判断何者正确?( )