试题
题目:
如图所示,在矩形ABCD中,M是BC上一个动点,DE⊥AM,E为垂足,
(1)求证:△ADE∽△ABM;
(2)若3AB=2BC,并且AB,BC的长是方程x
2
-(k-2)x+2k=0的两个根.求k的值.
答案
(1)证明:∵四边形ABCD是矩形,
∴AD∥BC,
∴∠DAE=∠AMB,
又∵∠DEA=∠B=90°,
∴△ADE∽△ABM;
(2)∵AB,BC的长是方程x
2
-(k-2)x+2k=0的两个根,
∴
AB+BC=k-2
AB·BC=2k
,
∵3AB=2BC,
∴
5
3
BC=k-2
2
3
B
C
2
=2k
,
即3k
2
-37k+12=0,解得k=12或k=
1
3
.
(1)证明:∵四边形ABCD是矩形,
∴AD∥BC,
∴∠DAE=∠AMB,
又∵∠DEA=∠B=90°,
∴△ADE∽△ABM;
(2)∵AB,BC的长是方程x
2
-(k-2)x+2k=0的两个根,
∴
AB+BC=k-2
AB·BC=2k
,
∵3AB=2BC,
∴
5
3
BC=k-2
2
3
B
C
2
=2k
,
即3k
2
-37k+12=0,解得k=12或k=
1
3
.
考点梳理
考点
分析
点评
相似三角形的判定与性质;根与系数的关系;矩形的性质.
(1)先根据矩形的性质,得到AD∥BC,则∠DAE=∠AMB,又由∠DEA=∠B,根据有两角对应相等的两三角形相似,即可证明出△DAE∽△AMB;
(2)根据根与系数的关系,列出方程组解答即可.
此题主要考查了相似三角形的判定与性质,矩形的性质.(1)中根据矩形的对边平行进而得出∠DAE=∠AMB是解题的关键,此题还将动点问题与一元二次方程和矩形的性质相结合,综合性不错.
找相似题
(2013·重庆)如图,在平行四边形ABCD中,点E在AD上,连接CE并延长与BA的延长线交于点F,若AE=2ED,CD=3cm,则AF的长为( )
(2013·雅安)如图,DE是△ABC的中位线,延长DE至F使EF=DE,连接CF,则S
△CEF
:S
四边形BCED
的值为( )
(2013·新疆)如图,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2cm,D为BC的中点,若动点E以1cm/s的速度从A点出发,沿着A→B→A的方向运动,设E点的运动时间为t秒(0≤t<6),连接DE,当△BDE是直角三角形时,t的值为( )
(2013·无锡)如图,梯形ABCD中,AD∥BC,对角线AC、BD相交于O,AD=1,BC=4,则△AOD与△BOC的面积比等于( )
(2013·台湾)如图,将一张直角三角形纸片沿虚线剪成甲、乙、丙三块,其中甲、丙为梯形,乙为三角形.根据图中标示的边长数据,比较甲、乙、丙的面积大小,下列判断何者正确?( )