试题

题目:
青果学院如图所示,在一个直角三角形的内部作一个长方形ABCD,其中AB和BC分别在两直角边上,设AB=xm,长方形的面积为ym2,要使长方形的面积最大,其边长x应为(  )



答案
D
解:根据题意得:AD=BC=
y
x
,上边三角形的面积为:
1
2
(5-x)
y
x
,右侧三角形的面积为:
1
2
x(12-
y
x
),
所以y=30-
1
2
(5-x)
y
x
-
1
2
x(12-
y
x
),
整理得y=-
12
5
x2+12x,
=-
12
5
[x2-5x+(
5
2
)2-
25
4
],
=-
12
5
(x-
5
2
2+15,
∵-
12
5
<0
∴长方形面积有最大值,此时边长x应为
5
2
m.
故要使长方形的面积最大,其边长
5
2
m.
故选:D.
考点梳理
相似三角形的判定与性质;二次函数的最值.
本题考查二次函数最小(大)值的求法.欲求使长方形的面积最大时的边长x,先利用:长方形的面积=大三角形的面积-两个小三角形的面积表示出函数y,再利用二次函数的性质求出最大值及相应的x的值即可.
本题考查了二次函数的最值.求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法,常用的是后两种方法,当二次系数a的绝对值是较小的整数时,用配方法较好,如y=-x2-2x+5,y=3x2-6x+1等用配方法求解比较简单.
找相似题