答案

证明:(1)∵PC是直径,
∴∠PDC=90°,∴∠BDP+∠ADC=90°,
又∠BDP=∠DCP,
∴∠ADC=∠ACD,即AC=AD,
∴AD也是⊙O的切线,
∴BD
2=BP·BC,
∵BD=2BP,即4BP
2=BP·BC,
∴BC=4BP,即PC=3BP;
(2)连接OD,则OD⊥AB,
则△BOD∽△BAC,BD=2BP,BC=4BP,
∴
=
=
=
,即AC=2OD,
∴AC=PC.

证明:(1)∵PC是直径,
∴∠PDC=90°,∴∠BDP+∠ADC=90°,
又∠BDP=∠DCP,
∴∠ADC=∠ACD,即AC=AD,
∴AD也是⊙O的切线,
∴BD
2=BP·BC,
∵BD=2BP,即4BP
2=BP·BC,
∴BC=4BP,即PC=3BP;
(2)连接OD,则OD⊥AB,
则△BOD∽△BAC,BD=2BP,BC=4BP,
∴
=
=
=
,即AC=2OD,
∴AC=PC.