试题
题目:
如图,已知线段AB∥CD,AD与BC相交于点K,E是线段AD上一动点.
(1)若BK=
5
2
KC,求
CD
AB
的值;
(2)连接BE,若BE平分∠ABC,则当AE=
1
2
AD时,猜想线段AB、BC、CD三者之间有怎样的等量关系?请写出你的结论并予以证明.
答案
解:(1)∵BK=
5
2
KC,
∴
CK
BK
=
2
5
,
又∵CD∥AB,
∴△KCD∽△KBA,
∴
CD
AB
=
CK
BK
=
2
5
;
(2)当BE平分∠ABC,AE=
1
2
AD时,AB=BC+CD.
证明:取BD的中点为F,连接EF交BC于G点,
由中位线定理,得EF∥AB∥CD,
∴G为BC的中点,∠GEB=∠EBA,
又∵∠EBA=∠GBE,
∴∠GEB=∠GBE,
∴EG=BG=
1
2
BC,而GF=
1
2
CD,EF=
1
2
AB,
∵EF=EG+GF,
即:
1
2
AB=
1
2
BC+
1
2
CD;
∴AB=BC+CD.
解:(1)∵BK=
5
2
KC,
∴
CK
BK
=
2
5
,
又∵CD∥AB,
∴△KCD∽△KBA,
∴
CD
AB
=
CK
BK
=
2
5
;
(2)当BE平分∠ABC,AE=
1
2
AD时,AB=BC+CD.
证明:取BD的中点为F,连接EF交BC于G点,
由中位线定理,得EF∥AB∥CD,
∴G为BC的中点,∠GEB=∠EBA,
又∵∠EBA=∠GBE,
∴∠GEB=∠GBE,
∴EG=BG=
1
2
BC,而GF=
1
2
CD,EF=
1
2
AB,
∵EF=EG+GF,
即:
1
2
AB=
1
2
BC+
1
2
CD;
∴AB=BC+CD.
考点梳理
考点
分析
点评
相似三角形的判定与性质;三角形中位线定理.
(1)由已知得
CK
BK
=
2
5
,由CD∥AB可证△KCD∽△KBA,利用
CD
AB
=
CK
BK
求值;
(2)AB=BC+CD.作△ABD的中位线,由中位线定理得EF∥AB∥CD,可知G为BC的中点,由平行线及角平分线性质,得∠GEB=∠EBA=∠GBE,则EG=BG=
1
2
BC,而GF=
1
2
CD,EF=
1
2
AB,利用EF=EG+GF求线段AB、BC、CD三者之间的数量关系.
本题考查了平行线的性质,三角形中位线定理,相似三角形的判定与性质,角平分线的性质.关键是构造平行线,由特殊到一般探索规律.
找相似题
(2013·重庆)如图,在平行四边形ABCD中,点E在AD上,连接CE并延长与BA的延长线交于点F,若AE=2ED,CD=3cm,则AF的长为( )
(2013·雅安)如图,DE是△ABC的中位线,延长DE至F使EF=DE,连接CF,则S
△CEF
:S
四边形BCED
的值为( )
(2013·新疆)如图,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2cm,D为BC的中点,若动点E以1cm/s的速度从A点出发,沿着A→B→A的方向运动,设E点的运动时间为t秒(0≤t<6),连接DE,当△BDE是直角三角形时,t的值为( )
(2013·无锡)如图,梯形ABCD中,AD∥BC,对角线AC、BD相交于O,AD=1,BC=4,则△AOD与△BOC的面积比等于( )
(2013·台湾)如图,将一张直角三角形纸片沿虚线剪成甲、乙、丙三块,其中甲、丙为梯形,乙为三角形.根据图中标示的边长数据,比较甲、乙、丙的面积大小,下列判断何者正确?( )