试题
题目:
如图,△ABC是边长为6的等边三角形,AD=2,AE∥BC,直线BD交AE于点E,则BE的长为( )
A.3
7
B.4
3
C.3
3
D.5
答案
A
解:过点E作EF⊥BA的延长线于点F,
∵△ABC是边长为6的等边三角形,AD=2,
∴CD=6-2=4,
∵AE∥BC,
∴∠ACB=∠EAD,∠ADE=∠BDC,
∴△ADE∽△CDB,
∴
AE
BC
=
AD
CD
,
AE
6
=
2
4
解得AE=3,
∵∠ABC=60°,AE∥BC,
∴∠FAE=60°,
∴AF=
1
2
AE=
3
2
,EF=AE·sin60°=3×
3
2
=
3
3
2
,
∴BF=AB+AF=6+
3
2
=
15
2
,
∴BE=
BF
2
+
EF
2
=
(
15
2
)
2
+
(
3
3
2
)
2
=3
7
.
故选A.
考点梳理
考点
分析
点评
专题
相似三角形的判定与性质;等边三角形的性质;勾股定理.
过点E作EF⊥BA的延长线于点F,先由△ABC是边长为6的等边三角形,AD=2求出CD的长,再根据AE∥BC得出△ADE∽△CDB,故可得出AE的长,再由∠ABC=60°,可得出∠FAE=60°,故可得出AF及EF的长,在Rt△BEF中利用勾股定理即可求出BE的长.
本题考查的是相似三角形的判定与性质及勾股定理,根据题意作出辅助线,构造出直角三角形,利用勾股定理求解是解答此题的关键.
探究型.
找相似题
(2013·重庆)如图,在平行四边形ABCD中,点E在AD上,连接CE并延长与BA的延长线交于点F,若AE=2ED,CD=3cm,则AF的长为( )
(2013·雅安)如图,DE是△ABC的中位线,延长DE至F使EF=DE,连接CF,则S
△CEF
:S
四边形BCED
的值为( )
(2013·新疆)如图,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2cm,D为BC的中点,若动点E以1cm/s的速度从A点出发,沿着A→B→A的方向运动,设E点的运动时间为t秒(0≤t<6),连接DE,当△BDE是直角三角形时,t的值为( )
(2013·无锡)如图,梯形ABCD中,AD∥BC,对角线AC、BD相交于O,AD=1,BC=4,则△AOD与△BOC的面积比等于( )
(2013·台湾)如图,将一张直角三角形纸片沿虚线剪成甲、乙、丙三块,其中甲、丙为梯形,乙为三角形.根据图中标示的边长数据,比较甲、乙、丙的面积大小,下列判断何者正确?( )